Section 2.2 – Simplifying Radicals

This booklet belongs to:______Block: _____

- Remember: **Radicals** can be written as **fractional exponents**! (Flower Power)
- **Examples:** $\sqrt{2} = 2^{\frac{1}{2}}$ $\sqrt[4]{x} = x^{\frac{1}{4}}$ $\sqrt[n]{a} = a^{\frac{1}{n}}$, *n* is positive
- There are 3 Important Relationships of Radicals to remember and understand
- 1. $\sqrt[n]{a^n} = a$, $a \ge 0$, because $\sqrt[n]{a^n} = (a^n)^{\frac{1}{n}} = a$ (This is also true for a < 0 when n is odd)

2.
$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}, \quad a, b \ge 0, because \sqrt[n]{ab} = (ab)^{\frac{1}{n}} = (a)^{\frac{1}{n}} \cdot (b)^{\frac{1}{n}} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

3.
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}, \quad a \ge 0, b > 0, because \sqrt[n]{\frac{a}{b}} = \left(\frac{a}{b}\right)^{\frac{1}{n}} = \frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

Simplifying Expressions with Radicals

• A radical is simplified when no perfect square factor is still under the radical sign

Example: Simplify $\sqrt{20}$

Solution: There is a perfect square that is a factor of 20. It's 4!

$$\sqrt{20} = \sqrt{4 \cdot 5} \quad \rightarrow \quad \sqrt{4} \cdot \sqrt{5} = 2\sqrt{5}$$

- An alternate approach is to break 20 down into prime factors
 - o Then look for pairs of factors
 - Each pair of like factors produces one factor outside the radical.

$$\sqrt{20} = \sqrt{2 \cdot 2 \cdot 5} \quad \rightarrow \quad \sqrt{2 \cdot 2} \cdot \sqrt{5} = 2\sqrt{5}$$
One pair inside becomes one on the outside!

 $\sqrt[3]{24}$ Simplify Example:

Solution: Since it's a cube root, we need perfect cube factors, or a triplet of like factors

$$\sqrt[3]{24} = \sqrt[3]{8 \cdot 3} \rightarrow \sqrt[3]{8} \cdot \sqrt[3]{3} = 2\sqrt[3]{3}$$
$$\sqrt[3]{24} = \sqrt[3]{2 \cdot 2 \cdot 2 \cdot 3} \rightarrow \sqrt[3]{2 \cdot 2 \cdot 2 \cdot 3} \sqrt[3]{3} = 2\sqrt[3]{3}$$

 $\sqrt{180x^6y^3}$ Simplify Example:

Solution: If the numerical coefficient is big, factor it into prime factors too

$$\sqrt{180x^6y^3} = \sqrt{2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot x^6 \cdot y^3}$$

$$\sqrt{(2 \cdot 2)(3 \cdot 3) \cdot x^2 \cdot x^2 \cdot x^2 \cdot y^2} \cdot \sqrt{5y}$$

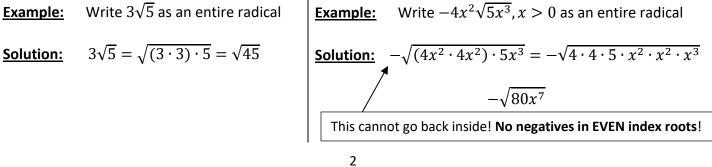
$$x^2 \text{ becomes } x \text{ when it}$$

$$6x^3y\sqrt{5y}$$

$$x^2 \text{ becomes } x \text{ when it}$$

$$x^2 \text{ becomes } x \text{ when it}$$

Example: Simplify
$$\sqrt[3]{\frac{x^{12}}{64}}$$


Solution:

Notice that 64 is a perfect cube.

$$\sqrt[3]{\frac{x^{12}}{64} = \frac{\sqrt[3]{x^{12}}}{\sqrt[3]{64}}} \to \frac{\sqrt[3]{(x^4)^3}}{\sqrt[3]{64}} = \frac{x^4}{4}$$

Changing Mixed Radicals to Entire Radicals

• This is simply the reverse of the simplification process

Example: Write $2xy\sqrt[3]{4x^2y^3}$, $x, y \ge 0$ as an entire radical

Solution:
$$2xy\sqrt[3]{4x^2y^3} = \sqrt[3]{(2xy)(2xy)(2xy)\cdot 4x^2y^3} \rightarrow \sqrt[3]{2\cdot 2\cdot 2\cdot 4\cdot xxxx^2yyyy^3} = \sqrt[3]{32x^5y^6}$$

Example: Write $\frac{3x^2y}{5}\sqrt[3]{2xy^2}$, $x, y \ge 0$ as an entire radical

$$\underline{Solution:} \quad \frac{3x^2y}{5}\sqrt[3]{2xy^2} = \sqrt[3]{\frac{3x^2y}{5} \cdot \frac{3x^2y}{5} \cdot \frac{3x^2y}{5} \cdot (2xy^2)} \rightarrow \sqrt[3]{\frac{3\cdot 3\cdot 3\cdot 2}{5\cdot 5\cdot 5}} (x^2 \cdot x^2 \cdot x^2 \cdot x) (y \cdot y \cdot y \cdot y^2) = \sqrt[3]{\frac{54x^7y^5}{125}}$$

Example: Write $-2x\sqrt[5]{4x}$ as an entire radical

Solution: Since we have an **odd indexed root**, we can **multiply the negative in!**

$$\sqrt[5]{(-2)(-2)(-2)(-2)(-2)(4)(x^5 \cdot x)} = \sqrt[5]{-128x^6}$$

Be careful with when you can and cannot multiply the negative in, it comes down to the index of the root!!

Section 2.2 – Practice Problems

Simplify

1. – √ 16	2. $\sqrt{\frac{1}{4}}$
3. √ <u>0.16</u>	4 \sqrt{144 }
5. $\sqrt[3]{-8}$	6. ⁵ √32
7. √ <u>169</u>	8. ⁶ √0.000064

Solve for *x*

9. $x^2 = 25$	10. $x^2 = 81$
11. $x^2 = 0.04$	12. $x^2 = 121$
13. $x^3 = -8$	14. $x^3 = -64$

15.
$$x^4 = 16$$
 16. $x^4 = -16$

 17. $x^5 = -32$
 18. $x^6 = 64$

Change to simplest radical form

19. \{32	20. \{\80
21. \(\)	22. ³ √54
23. $\sqrt[3]{16}$	24. $\sqrt[3]{-72}$
25. 3 √ 45	26. $-2\sqrt[3]{162}$

Express in simplest radical form

27.
$$\sqrt{x^3y^2}$$
 28. $\sqrt{49x^3y^5}$

 29. $\sqrt{18x^6}$
 30. $\sqrt{25x^6y^{11}}$

31. $\sqrt{5t^4}$	32. $\sqrt{32r^5t^7}$
33. $\sqrt[3]{40x^3}$	34. $\sqrt[3]{-8x^9z^3}$
35. $\sqrt[3]{216h^5}$	36. $\sqrt[3]{-64x^3y^6}$
Write as an entire radical	
37. 2√ 5	38. $-4\sqrt{3}$
39. 3 \ \4	40. $2\sqrt[3]{3}$
41. $3\sqrt[3]{4}$	42. $-4\sqrt[3]{5}$
	26/3
43. 2 ⁴ √3	44. 2 ⁶ √3
	1

Pre-Calculus Math 11

45. Express the following in simplest radical form.

$$(2x\sqrt[3]{2y^4})(x^2\sqrt[3]{4y^2})$$

46. A rectangular solid has a volume of $192cm^3$. If the height is twice the width and the length is three times the width, what are the dimensions of the rectangular solid?

1.	-4
2.	$\frac{1}{2}$ 0.4
3.	0.4
4. 5.	-12
5.	-2
6.	2 13
7.	13
8.	0.2
9.	<u>±</u> 5
10.	<u>±9</u> ±0.2
11.	<u>+0.2</u>
	<u>+</u> 11
	-2
	-4
	<u>+</u> 2
	Does Not Exist
	-2
18.	<u>+2</u>
	$4\sqrt{2}$
	$4\sqrt{5}$
	$5\sqrt{3}$
	$3\sqrt[3]{2}$
23.	$2\sqrt[3]{2}$

Answer Key – Section 2.2

24. $-2\sqrt[3]{9}$
25 . 9√5
26. $-6\sqrt[3]{6}$
$27. xy\sqrt{x}$
28. $7xy^2\sqrt{xy}$
29. $3x^3\sqrt{2}$
30. $5x^3y^5\sqrt{y}$
31. $t^2\sqrt{5}$
32. $4r^2t^3\sqrt{2rt}$
33. $2x\sqrt[3]{5}$
34. $-2x^3z$
35. $6h\sqrt[3]{h^2}$
36. $-4xy^2$
37. √ <u>20</u>
38. $-\sqrt{48}$
39 . √ <u>36</u>
40. $\sqrt[3]{24}$
41. $\sqrt[3]{108}$
42. $\sqrt[3]{-320}$
43. ⁴ √48
44. ⁶ √192
45. $4x^5y^2$
46. $w = 2\sqrt[3]{4}$ $h = 4\sqrt[3]{4}$
$l = 6\sqrt[3]{4}$

Pre-Calculus Math 11

Extra Work Space