Section 2.1b – Multiplication and Division of a Common Base

This booklet belongs to:	Block:
--------------------------	--------

Multiplication of a Common Base

- When we start doing operations with exponents, ask a question...
- > Do I have a **COMMON BASE**?
 - If the answer is **NO**, you are **done**
 - If the answer is **YES**, we can **continue**

Example 1:

- $2^3 \cdot 2^4$ Do I have a **COMMON BASE**? **YUP!** It's 2
 - > What am I looking at then?

Remember from earlier that: $2^3 = 2 \cdot 2 \cdot 2$ and $2^4 = 2 \cdot 2 \cdot 2 \cdot 2$

So,

$$2^3 \cdot 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$$

What did I do? I ADDED the Exponents!

 $2^3 \cdot 2^4 = 2^{3+4} = 2^7$

Example 2: Simplify the Following

- i) $3^1 \cdot 3^6 = 3^{1+6} = 3^7$ $2^4 \cdot 2^4 = 2^{4+4} = 2^8$
- ii) $5^5 \cdot 5^7 = 5^{5+7} = 5^{12}$ $7^9 \cdot 7^{12} = 7^{9+12} = 7^{21}$

Multiplication Rule

Must have a **COMMON BASE**

 $a^m \cdot a^n = a^{m+n}$

Division of a Common Base

• Again, this only works with a **COMMON BASE**

Example 3:

 $3^7 \div 3^5$ well we can **re-write** that as:

 $\frac{3^7}{3^5}$

• It's a fraction and when we have the same number top and bottom we can **cancel things out**!

$$\frac{3^7}{3^5} = \frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3} = \frac{3 \cdot 3}{1} = 3 \cdot 3 = 3^2$$

In other words:

$$\frac{3^7}{3^5} = 3^{7-5} = 3^2$$

Example 4: Simplify the following

- i) $12^5 \div 12^2 = 12^{5-2} = 12^3$ $6^8 \div 6^2 = 6^{8-2} = 6^6$
- ii) $3^{54} \div 3^{51} = 3^{54-51} = 3^3$

$$9^5 \div 9^7 = 9^{5-7} = 9^{-2}$$

Division Rule

Must have a **COMMON BASE**

 $a^m \div a^n = a^{m-n}$

Multiplication and Division with Negatives

- It gets tricky again when we bring **negatives** back into the fray
- We need to make sure we have a **COMMON BASE**
- Things are not always what they seem

Example 5:

 $(-3)^2 \cdot (-3)^3$ Do we have a **COMMON BASE?**

✓ Since they are **both in brackets**, <u>YES, WE DO!</u>

So, we can do the same as we did previous:

$$(-3)^2 \cdot (-3)^3 = (-3)^{2+3} = (-3)^5$$

Example 6:

 $-3^2 \cdot (-3)^3$ Do we have a **COMMON BASE**?

- ✓ Since they are different with respect to brackets, NO WE DON'T
- ✓ We need to look at how the **brackets** will **affect the result**
- ✓ Will they end up **POSITIVE** or **NEGATIVE**?

So, we can re-write it like this:

From what we learned previously,

$$-3^2 \cdot -3^3 = (-1)3^2 \cdot (-1)3^3$$

And with some reshuffling, a now COMMON BASE and canceling out:

$$(-1)(-1)3^2 \cdot 3^3 = 3^{2+3} = 3^5$$

Example 7:

$$-4^{3} \cdot (-4)^{2} = -4^{3} \cdot 4^{2} = (-1)4^{3} \cdot 4^{2} = (-1)4^{3+2} = (-1)4^{5} = -4^{5}$$
FOREVER NEGATIVE FOREVER POSITIVE

Example 8:

$$-5^{3} \cdot (-5)^{2} \cdot (-5)^{3} = -5^{3} \cdot 5^{2} \cdot -5^{3} = (-1)5^{3} \cdot 5^{2} \cdot (-1)5^{3} = (-1)(-1)5^{3+2+3} = 5^{8}$$
FOREVER NEGATIVE
FOREVER NEGATIVE
FOREVER POSITIVE
FOREVER POSITIVE

Division yields the same scenario

• We have to assess the BRACKET situation

Example 10:

$$\frac{2^4}{-2^2} = \frac{2^4}{(-1)2^2} = (-1)2^{4-2} = (-1)2^2 = -2^2$$

Example 11:

$$\frac{(-3)^5}{-3^3} = \frac{FN}{(-1)3^3} = \frac{(-1)3^5}{(-1)3^3} = (-1)(-1)3^{5-3} = 3^2$$

Section 2.1b – Practice Questions

EMERGING LEVEL QUESTIONS

Simplify the following, leaves answer in **Exponential Form**.

1.	$2^3 \cdot 2^4$	2.	$3^2 \cdot 3^5$
3.	$(-4)^2 \cdot (-4)^5$	4.	$2^3 \cdot 2^2$
5.	$3^2 \cdot 3^3$	6.	$2^4 \cdot 3^2 \cdot 2^5 \cdot 3^6$
7.	$2^{-2} \cdot 2^{3}$	8. (4	$(-4)^2 \cdot (-4^3)$

PROFICIENT LEVEL QUESTIONS

9.	$3^4 \cdot - 3^5 \cdot (-3)^2$	10. $(-2)^8 \cdot (-2)^{-3} \cdot (-2)^{-4}$
11. (-5)	$(-5)^4 \cdot (-5)^2 \cdot (-5)^3$	12. $(-3)^4 \cdot (-3)^5 \cdot (-3)^2 \cdot (-3)^6$

13.
$$-2^3 \cdot 2^4 \cdot -2^7 \cdot 2^3 \cdot 2^{-12}$$

14. $5 \cdot -5^3 \cdot (-5)^7 \cdot 5^6 \cdot (-5)^3$

Simply the following, leave answer in Exponential Form

6

EXTENDING LEVEL QUESTIONS

23.	$2^{a+3} \cdot 2^{a-1}$	24.	$\frac{5^{r+1}}{5^r}$
25.	$3^{-a+4} \cdot 3^{a-3}$	26.	$\frac{3^{2m}}{3^{m-1}}$

Answer Key – Section 2.1b

1.	27	2.	3 ⁷	3.	$(-4)^7$ or -4^7
4.	2 ⁵	5.	3 ⁵	6.	2 ⁹ · 3 ⁸
7.	2	8.	-4 ⁶	9.	-3 ¹¹
10.	(−2) or −2	11.	$(-5)^{15}$ or -5^{15}	12.	$(-3)^{17}$ or -3^{17}
13.	2 ⁵	14.	-5^{20}	15.	24
16.	$(-3)^8$ or 3^8	17.	7 ³	18.	6 ⁰ or 1
19.	-5	20.	$(-2)^9$ or -2^9	21.	5 ⁵
22.	8 ¹⁵	23.	2^{2a+2}	24.	5
25.	3	26.	3 ^{<i>m</i>+1}		

Extra Work Space