Section 2.1b - Multiplication and Division of a Common Base

This booklet belongs to: \qquad Block: \qquad

Multiplication of a Common Base

> When we start doing operations with exponents, ask a question...
$>$ Do I have a COMMON BASE?

- If the answer is NO, you are done
- If the answer is YES, we can continue

Example 1:

$2^{3} \cdot 2^{4}$ Do I have a COMMON BASE? YUP! It's 2
> What am l looking at then?
Remember from earlier that: $\quad 2^{3}=2 \cdot 2 \cdot 2$ and $\quad 2^{4}=2 \cdot 2 \cdot 2 \cdot 2$

So,

$$
2^{3} \cdot 2^{4}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2
$$

What did I do?
I ADDED the Exponents!

$$
2^{3} \cdot 2^{4}=2^{3+4}=2^{7}
$$

Example 2: Simplify the Following
i) $\quad 3^{1} \cdot 3^{6}=3^{1+6}=3^{7}$
ii) $\quad 5^{5} \cdot 5^{7}=5^{5+7}=5^{12}$
$2^{4} \cdot 2^{4}=2^{4+4}=2^{8}$
$7^{9} \cdot 7^{12}=7^{9+12}=7^{21}$

Multiplication Rule

Must have a COMMON BASE

$$
a^{m} \cdot a^{n}=a^{m+n}
$$

Division of a Common Base

- Again, this only works with a COMMON BASE

Example 3:

$3^{7} \div 3^{5} \quad$ well we can re-write that as:

$$
\frac{3^{7}}{3^{5}}
$$

- It's a fraction and when we have the same number top and bottom we can cancel things out!

$$
\frac{3^{7}}{3^{5}}=\frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}=\frac{3 \cdot 3}{1}=3 \cdot 3=3^{2}
$$

In other words:

$$
\frac{3^{7}}{3^{5}}=3^{7-5}=3^{2}
$$

Example 4: \quad Simplify the following
i) $\quad 12^{5} \div 12^{2}=12^{5-2}=12^{3}$

$$
6^{8} \div 6^{2}=6^{8-2}=6^{6}
$$

ii) $\quad 3^{54} \div 3^{51}=3^{54-51}=3^{3}$

$$
9^{5} \div 9^{7}=9^{5-7}=9^{-2}
$$

Division Rule

Must have a COMMON BASE

$$
a^{m} \div a^{n}=a^{m-n}
$$

Multiplication and Division with Negatives

- It gets tricky again when we bring negatives back into the fray
- We need to make sure we have a COMMON BASE
- Things are not always what they seem

Example 5:

$(-3)^{2} \cdot(-3)^{3} \quad$ Do we have a COMMON BASE?
\checkmark Since they are both in brackets, YES, WE DO!
So, we can do the same as we did previous:

$$
(-3)^{2} \cdot(-3)^{3}=(-3)^{2+3}=(-3)^{5}
$$

Example 6:

$-3^{2} \cdot(-3)^{3}$
Do we have a COMMON BASE?
\checkmark Since they are different with respect to brackets, NO WE DON'T
\checkmark We need to look at how the brackets will affect the result
\checkmark Will they end up POSITIVE or NEGATIVE?

So, we can re-write it like this:

From what we learned previously,

$$
-3^{2} \cdot-3^{3}=(-1) 3^{2} \cdot(-1) 3^{3}
$$

And with some reshuffling, a now COMMON BASE and canceling out:

$$
(-1)(-1) 3^{2} \cdot 3^{3}=3^{2+3}=3^{5}
$$

Example 7:

Example 8:

Division yields the same scenario

- We have to assess the BRACKET situation

Example 9:

$$
\frac{-5^{5}}{(-5)^{2}}=\frac{F N}{5^{2}}=\quad \frac{-5^{5}}{5^{2}}=\quad(-1) 5^{5-2}=\quad(-1) 5^{3}=\quad-5^{3}
$$

Example 10:

$$
\frac{2^{4}}{\hdashline-2^{2}}: \begin{array}{c:c}
F P & 2^{4} \\
\hdashline & F N 2^{2}
\end{array}=\quad(-1) 2^{4-2}=\quad(-1) 2^{2}=\quad \mathbf{- 2}^{2}
$$

Example 11:

$$
\frac{(-3)^{5}}{-3^{3}}: \begin{array}{c:c}
F N & -3^{5} \\
(-1) 3^{3}
\end{array}=\frac{(-1) 3^{5}}{(-1) 3^{3}}=\quad(-1)(-1) 3^{5-3}=3^{2}
$$

Section 2.1b - Practice Questions

EMERGING LEVEL QUESTIONS

Simplify the following, leaves answer in Exponential Form.

1.	$2^{3} \cdot 2^{4}$	2.	$3^{2} \cdot 3^{5}$
3.	$(-4)^{2} \cdot(-4)^{5}$	4.	$2^{3} \cdot 2^{2}$
5.	$3^{2} \cdot 3^{3}$	6.	$2^{4} \cdot 3^{2} \cdot 2^{5} \cdot 3^{6}$
		8.	$(4) \cdot(-4)^{2} \cdot\left(-4^{3}\right)$
7.	$2^{-2} \cdot 2^{3}$		

PROFICIENT LEVEL QUESTIONS
9. $3^{4} \cdot-3^{5} \cdot(-3)^{2}$
10. $\quad(-2)^{8} \cdot(-2)^{-3} \cdot(-2)^{-4}$
11. $(-5)^{6} \cdot(-5)^{4} \cdot(-5)^{2} \cdot(-5)^{3}$

13. $-2^{3} \cdot 2^{4} \cdot-2^{7} \cdot 2^{3} \cdot 2^{-12}$

Simply the following, leave answer in Exponential Form

EXTENDING LEVEL QUESTIONS

23. $2^{a+3} \cdot 2^{a-1}$	$\frac{5^{r+1}}{5^{r}}$
25.	$3^{-a+4} \cdot 3^{a-3}$
	$\frac{3^{2 m}}{3^{m-1}}$

Answer Key - Section 2.1b

1.	2^{7}	2.	3^{7}	3.	$(-4)^{7}$ or -4^{7}
4.	2^{5}	5.	3^{5}	6.	$2^{9} \cdot 3^{8}$
7.	2	8.	-4^{6}	9.	-3^{11}
10.	(-2) or -2	11.	$(-5)^{15}$ or -5^{15}	12.	$(-3)^{17}$ or -3^{17}
13.	2^{5}	14.	-5^{20}	15.	2^{4}
16.	$(-3)^{8}$ or 3^{8}	17.	7^{3}	18.	6^{0} or 1
19.	-5	20.	$(-2)^{9}$ or -2^{9}	21.	5^{5}
22.	8^{15}	23.	$2^{2 a+2}$	24.	5
25.	3	26.	3^{m+1}		

Extra Work Space

