Section 2.1 - Functions and Relations Review

- In graph theory, we plot two-dimensional figures using (x, y) coordinate pairs
- There is a hierarchy of what it is we graph

- Everything that is graphed is known as a Relation
- It is a set of ordered pairs (x, y)
- A bunch of individual points or those points connected by a line
- In order to become a Function the Relation has to pass a specific test/qualification
- For every value of the Domain (\boldsymbol{x}-values), there is one and only one value for the Range (y-values)
- It has to pass a VERTICAL LINE TEST
- If you draw a Vertical Line through the graph, it should only intersect it at one point
- In order to become a One-to-One Function, the Function has to pass a specific test/qualification
- For every one value of the Domain there is only one value in the Range
- It has to pass the Vertical Line Test first, then it has to pass the HORIZONTAL LINE TEST
- If you draw a Vertical and Horizontal Line through the graph, each line only intersects the graph once

Function Notation

- Mathematical script can give us Function Notation $f(x)=x+5$
- The notation $\boldsymbol{f}(\boldsymbol{x})$ is another way of writing \boldsymbol{y} as a function.
- $y=2 x-4$ may be written as $f(x)=2 x-4$, where $f(x)$ is read " f of x "
- Given $y=2 x-4$, we could ask, "find y when $x=5$ "
- Using function notation, the same problem can be asked by writing

$$
f(x)=2 x-4, \text { find } f(5)
$$

- The notation $f(5)$ implies the value of y when x is 5 .
- $f(5)=2(5)-4=6$, this implies that when \boldsymbol{x} is 5, \boldsymbol{y} is $\mathbf{6}$.
- This gives us the point $(\mathbf{5}, \mathbf{6}) . \quad x$ is the input, y or $f(x)$ is the output

Example 1: Given $f(x)=3 x+5$, determine the coordinates of one point on the line for $f(2)$.
Solution 1: $f(2)=3(2)+5=6+5=11$ Therefore the point is $(\mathbf{2}, \mathbf{1 1})$.

Example 2: Given $f(x)=3 x+5$, determine the coordinates of the point where $f(x)=-7$.
Solution 2: $\quad f(x)=-7$ is the same as saying $y=-7$
$-7=3 x+5 \rightarrow-7-5=3 x$
$-12=3 x \quad \rightarrow \quad-\frac{12}{3}=x \quad \rightarrow \quad x=-4$
Therefore, the point is $(-4,-7)$.

You can write (x, y) coordinates as $(x, f(x))$ if you think about it as a function

Domain and Range Notation

There are a number of syntax forms for Domain and Range, but I will use these primarily.

Domain	$x \geq 0$	This means x is any values greater than or equal to 0					
	$x=$ All Real Numbers	This means x is any value					
	$-4 \leq x \leq 7$	This means x is any value between or equal to -4 and 7					
	$\{-1,5,7,12\}$	This means the points are not connected, just $x-$ values	$	$	Range values are written the same way, but with y instead of x		
:---	:---	:---:					
Range	Rhis means y is any value between or equal to -4 and 7						

Section 2.1 - Practice Problems

1. For each graph, identify the Domain and Range and whether it is a function or not

b)

$D:$
$R:$
Function:

D:
R :

Function:
c)

D:
R :
Function:
d)

For $f(x)=3 x-2$, find:
2. $f(3)$
3. $f(-4)$
4. $f(k)$

For $f(x)=4 x+5$, find:
8. $f(3)$
9. $f(-4)$
10. $f(k)$
11. $f(2 x-1)$
12. $f(x+h)$
13. $f(x)+f(h)$

For $f(x)=-5 x+2$, find x when:
14. $f(x)=-12$
15. $f(x)=7$

Answer Key

1.

a) $D:-2 \leq x \leq 4$
$R:-4 \leq y \leq 4$
b) $D:-2 \leq x \leq 4$
$R:-4 \leq y \leq 0$
c) $D:\{-4,-2,0,2,4\}$
$R:\{-1,0,2\}$
d) $D:\{0,1,2,3\}$
$R:\{-3,-2,-1,0,1,2,3\}$
e) $D:-6 \leq x \leq 0$
$R:-6 \leq y \leq 0$
f) $D:-4 \leq x \leq 2$
$R: 0 \leq y \leq 1$
g) $D: x \leq 2$
R: All Real Numbers
h) $D:-6 \leq x \leq 2$
$R:-2 \leq y \leq 2$
Function: Yes
Function: Yes
Function: Yes
Function: No
Function: No
Function: Yes
Function: No
Function: No
2. 7
3. -14
4. $3 k-2$
5. $6 x-5$
6. $3 x+3 h-2$
7. $3 x+3 h-4$
8. 17
9. -11
10. $4 k+5$
11. $8 x+1$
12. $4 x+4 h+5$
13. $4 x+4 h+10$
14. $x=\frac{14}{5}$
15. $x=-1$

Extra Work Space

