Section 1: Area, Surface Area, and Volume

This booklet belongs to: \qquad Block: \qquad

Section	Due Date	How Did It Go?	Corrections Made and Understood
1.1			
1.2			
1.3			

Self-Assessment Rubric

Category	L-T Score	Learning Target Procedure	Algebraic/Arithmetic Procedure	Communication	Anecdotal Example
Extending	4	Procedural context demonstrates a detailed understanding of the learning targets	Algebraic/Arithmetic process is error free, logic is clear and easy to follow	Written output is clear, easy to follow, and shows depth of understanding	"You could teach this" or "It's an answer key"
	3.5	Procedural context demonstrates a thorough understanding of the learning targets	Algebraic/Arithmetic process contains very minor errors, logic is clear and easy to follow	Written output is clear, easy to follow, and shows depth of understanding	"Almost perfect, one or two little errors"
Proficient	3	Procedural context is clear, demonstrates sound reasoning and thought of the learning targets	Algebraic/Arithmetic process contains minor errors, logic is clear and easy to follow	Written output is clear and organized, and shows depth of understanding	"Good understanding
with a few errors"					

Learning Targets and Self-Evaluation

$\mathbf{L - T}$	Description	Mark
$\mathbf{1 - 1}$	\bullet \bullet Understanding the concept of area with respect to 2D shapes	
$\mathbf{1 - 2}$	- Understanding the transfer of 2D shapes to map Surface Area of 3D shapes - Formula manipulation and contextualized problems involving 3D shapes	
$\mathbf{1 - 3}$	\bullet - Understanding the transfer of 2D shapes to map Volume of 3D shapes - Formula manipulation and contextualized problems involving 3D shapes	

Comments:

Competency Evaluation

A valuable aspect to the learning process involves self-reflection and efficacy. Research has shown that authentic self-reflection helps improve performance and effort, and can have a direct impact on the growth mindset of the individual. In order to grow and be a life-long learner we need to develop the capacity to monitor, evaluate, and know what and where we need to focus on improvement. Read the following list of Core Competency Outcomes and reflect on your behaviour, attitude, effort, and actions throughout this unit.

- Rank yourself on the left of each column: 4 (Excellent), 3 (Good), 2 (Satisfactory), 1 (Needs Improvement)

Section 1.1 - Area

Area

- The amount of space it takes to fill a 2-Dimensional shape
- What 2-D shapes can we think of?
- Square and Rectangles
- Triangle
- Circle
- Parallelograms
- We have known equations for all of these, let's have a look.

Name	Shape	Equation for Area
Square		$l * l$ or l^{2}
Rectangle		$l * w$ or $b * h$
Circle		πr^{2}
Parallelogram		$b * h$
Triangle		$\frac{b * h}{2}$
2		
Adrian Herlaar, School District 61		ww.mrherlaar.wee

- A few of these equations are intuitive
- We don't need to worry about proving them, all we need to know is how they work
- Like Colour By Numbers we have to SUBSTITUTE the values we have into the equations
- We need to make sure we have enough information to solve the problem

Example:

What is the Area of the following Shapes?

a)	$\begin{gathered} A=l^{2} \\ A=4^{2} \\ A=16 \mathrm{~cm}^{2} \end{gathered}$
b)	$\begin{gathered} A=\frac{b h}{2} \\ A=\frac{5 \cdot 7}{2} \rightarrow \frac{35}{2} \rightarrow 17.5 \mathrm{~cm}^{2} \end{gathered}$
c)	$\begin{gathered} A=\pi r^{2} \\ A=\pi 2^{2} \\ A=4 \pi \mathrm{~cm}^{2} \end{gathered}$
d)	$\begin{gathered} A=b h \\ A=13 \cdot 9 \\ A=117 \mathrm{~cm}^{2} \end{gathered}$
e)	$\begin{gathered} A=b h \\ A=142 \cdot 68 \\ A=9656 \mathrm{~cm}^{2} \end{gathered}$

Compound Shapes

- Finding the Area of a Compound Shape is a little bit more tricky
- Compound shapes are shapes that involve the breakdown into shapes we know
- Sometimes we have to break a shape into pieces and then add the area's together
- Sometimes we have to subtract a piece of area from another

Example:

```
Break it into a triangle and square: Triangle Height of 10-6 = 4
```


Area of Square	Area of Triangle
$A=6 \cdot 9=54$	$A=\frac{9 \cdot 4}{2}=\frac{36}{2}=18$

Area Combined
$54+18=72$ units 2

Section 1.1 - Practice Problems

Find the area of each figure.
1)

Area $=$ \qquad
4)

$$
\text { Area }=
$$

Find the area of each figure.
7)

$$
\text { Area }=
$$

10)

$$
\text { Area }=
$$

\qquad
11)

Area $=$ \qquad
3)

Area $=\underline{ }$
6)

Area $=$ \qquad
Area $=$ \qquad
8)

Area $=$ \qquad
9)

$$
\text { Area }=
$$

12)

$$
\text { Area }=
$$

Find the area of each figure. Round the answer to 2 decimal places if necessary.
13)

Area $=$ \qquad
15)

$$
\text { Area }=
$$

\qquad
17)

$$
\text { Area }=
$$

Adrian Herlaar, School District 61
14)

Area $=$ \qquad
16)

$$
\text { Area }=
$$

18)

Area $=$

Area $=$ \qquad

Section 1.2 - Surface Area

Surface Area

- So what about Surface Area?
- How does Surface Area differ from Area?

Well it is still 2-Dimensional shapes but it is the combination of all the 2-Dimensional sides of a 3Dimensional figure.

- The Space you can wrap with paper, material, etc.
- The Space you can paint, colour in, etc.
- Requires 2 axes of direction, 2-D

So what Shapes do we have know?

- Cubes

- Rectangular Prisms
- Right Triangular Prisms
- Pyramids
\checkmark See the attached page for all the General Formulas
- Cones
- Spheres
> Remember that we just need to take the AREA of each 2-D side and ADD them up!

General Formulas

Cube:

$6 a^{2} \quad$ where a is the side length

Rectangular Prism:

$$
2 l w+2 l h+2 w h
$$

Cylinder:

$$
2 \pi r^{2}+2 \pi r h
$$

where \boldsymbol{r} is the radius of the circle and \boldsymbol{h} is the height of the cylinder

Right Triangular Prism:

$$
\frac{\mathbf{2}(\boldsymbol{b} * \boldsymbol{h})}{2}+(w * h)+(b * w)+(w * s)
$$

Example: Solve the following using their Equations

Example:

$$
\begin{gathered}
S A=2 l w+2 l h+2 w h \\
S A=2(10)(3)+2(10)(6)+2(3)(6) \\
S A=60+120+36=216 \mathrm{~cm}^{2}
\end{gathered}
$$

- When dealing with Right Prisms we can summon our good old Pythagorean Theorem to solve for unknown lengths on our Right Triangle a, b, and c
- Except that the Pythagorean Theorem in this case is:

$$
\begin{gathered}
b^{2}+h^{2}=s^{2} \\
\text { base }^{2}+\text { height }^{2}=(\text { slant height })^{2}
\end{gathered}
$$

Section 1.2 - Practice Problems

Find the Exact Surface Area of the following shapes. Round to 1 decimal place if necessary.
1)

2)

3)

Surface Area = \qquad
Surface Area = \qquad
Surface Area =
\qquad
4)

5)

6)

Surface Area = \qquad Surface Area = \qquad Surface Area = \qquad
7)

8)

9)

Surface Area $=$ \qquad Surface Area =
Surface Area = \qquad
Adrian Herlaar, School District 61
\qquad
-
\star
www.mrherlaar.weebly.com

Find the Exact Surface Area of the following shapes. Round to 1 decimal place if necessary.
10)

Surface Area = \qquad
13)

Surface Area = \qquad
16)

17)

$$
\text { Surface Area }=
$$

Surface Area = \qquad
12)

Surface Area = \qquad
15)

Surface Area = \qquad

Surface Area =

\qquad
18)

> Surface Area =
\qquad
www.mrherlaar.weebly.com

Section 1.3 - Volume

Volume

- Volume is the space that takes up the inside of a 3D shape
- Intuitively it is the AREA of the BASE of the figure times the HEIGHT
- The space you can fill with water, sand, yogurt, air, etc.
- Requires 3-axes of direction, 3D

Basic Volume Formulas

- Cube

$$
\begin{aligned}
& a^{3} \quad \text { where } a \text { is the side length of the cube } \\
& l * w * h \\
& \pi r^{2} h
\end{aligned}
$$

- Rectangular Prism
- Cylinder
- Triangular Prism
> For Volume it is substituting the numbers into the equations and solving for unknowns
$>$ See the following list of Surface Area and Volume Equations in the Table provided

Examples:

Find the Volume of the Following Shapes

12 cm

$$
\begin{gathered}
V=(\text { Area of Base }) h \\
V=\pi r^{2}(h)=\pi(11)^{2}(27) \\
V=\pi(121)(27)=3267 \pi \mathrm{~cm}^{3}
\end{gathered}
$$

Section 1.3 - Practice Problems

Find the volume of each shape. Round the answer to nearest tenth. (use $\pi=3.14$)
1)

2)

3)

Volume $=$ \qquad
Volume $=$ \qquad
Volume $=$ \qquad
4)

6)

Volume $=$ \qquad
Volume $=$ \qquad
7)

8)

Volume $=$ \qquad

13
\qquad
Volume $=$
Volume $=$ \qquad
www.mrherlaar.weebly.com

Surface Area and Volume General Formula Sheet

Geometric Solid	Surface Area	Volume
Cylinder	$\begin{aligned} & A_{\text {top }}=\pi r^{2} \\ & A_{\text {base }}=\pi r^{2} \\ & A_{\text {side }}=2 \pi r h \\ & S A=2 \pi r^{2}+2 \pi r h \end{aligned}$	$V=($ area of base $) \times h$
Sphere	$S A=4 \pi r^{2}$ or $S A=\pi d^{2}$	$V=\frac{4}{3} \pi r^{3}$
Cone	$\begin{aligned} & A_{\text {side }}=\pi r s \\ & A_{\text {base }}=\pi r^{2} \\ & S A=\pi r^{2}+\pi r s \end{aligned}$	$V=\frac{1}{3} \times(\text { area of base }) \times h$
Square-Based Pyramid	$\begin{aligned} & \left.A_{\text {triangle }}=\frac{1}{2} b s \text { (for each triangle }\right) \\ & A_{\text {base }}=b^{2} \\ & S A=2 b s+b^{2} \end{aligned}$	$V=\frac{1}{3} \times(\text { area of base }) \times h$
Rectangular Prism l	$S A=w h+w h+l w+l w+l h+l h$ or $S A=2(w h+l w+l h)$	$V=($ area of base $) \times h$
General Right Prism	$S A=$ the sum of the areas of all the faces	$V=($ area of base $) \times h$
General Right Pyramid	$S A=$ the sum of the areas of all the faces	$V=\frac{1}{3} \times(\text { area of base }) \times h$

Answer Key

Section 1.1

1. $113.1 f^{2}$
2. $144 y d^{2}$
3. $84 i n^{2}$
4. $21 i^{2}$
5. $50.3 \mathrm{ft}^{2}$
6. $32 y d^{2}$
7. $66 f t^{2}$
8. $153.9 i^{2}$
9. $40 y d^{2}$
10. 35 in 2
11. $16 y d^{2}$
12. $78.5 f^{2}$
13. $74.1 \mathrm{in}^{2}$
14. $174 y d^{2}$
15. $92 y d^{2}$
16. $113 \mathrm{ft}^{2}$
17. $53.9 f^{2}$
18. $71.4 y d^{2}$

Section 1.2

1. $82 i n^{2}$
2. $210 f t^{2}$
3. $282.7 y d^{2}$
4. $472 f t^{2}$
5. $461.8 y d^{2}$
6. 377.0 in 2
7. $294.0 y d^{2}$
8. $791.7 i^{2}$
9. $2827.4 f t^{2}$
10. $4486.2 y d^{2}$
11. 2770 in 2
12. $2940.5 f t^{2}$
13. $3769.9 \mathrm{ft}^{2}$
14. $9960 i^{2}$
15. $5192 y d^{2}$
16. $3696 y d^{2}$
17. $3499.5 f t^{2}$
18. 2532 in 2
