6 mulls

Given the information provided, solve for Interest

1. $P=\$ 4500 \quad r=12 \% \quad t=3 y r s \quad I=$?
2. $P=\$ 12250 \quad r=6.2 \% \quad t=6$ maths $I=$?

$$
\begin{aligned}
& I=\operatorname{Pr} t \quad 1620 \\
& I=4500 \cdot 0.12 \cdot 3
\end{aligned}
$$

$$
I=\operatorname{Pr} t
$$

$$
\frac{1}{2} y^{r}
$$

$$
I=12250 \cdot 0.062 \cdot \frac{1}{2}
$$

$$
I=379.75
$$

4. $P=\$ 200 \quad r=28 \% \quad t=6 y r s \quad I=$?

$$
\begin{aligned}
& I=\operatorname{Pr} t \\
& 200(0.28)(6) \\
& =336
\end{aligned}
$$

$$
I=\operatorname{pr} t
$$

$200(0.28)(6)$
$=3368=\frac{4}{12}=\frac{1}{3} y$

$$
r \frac{4}{12}=\frac{1}{3} y
$$

Given the information provided, solve for the missing value
6. $P=\$ 4800 \quad r=? \quad t=4$ maths $I=\$ 12$
5. $P=? \quad r=7.5 \% \quad t=4 y r s \quad I=\$ 150.30$

9. What amount will an account have after 4 years, if $\$ 7500$ is invested at an annual rate of 8%

$$
\begin{aligned}
& p=7500 \\
& n=365 \\
& t=4 \\
& r=0.08
\end{aligned}
$$

$$
A=7500\left(1+\frac{0.08}{365}\right)^{365(4)}
$$

$$
A=\$ 10328.10
$$

10. An investment opportunity of $\$ 50000$ for 10 years has two options: the first pays 11% compounded quarterly, the second pays 9% compounded monthly. Which is the better investment,

$$
\begin{array}{rlr}
\text { Option 1: } \begin{aligned}
p & : 50000 \\
t & : 10 \\
n & =4 \\
r & =11 \%
\end{aligned} & A=50000\left(1+\frac{0.11}{4}\right)^{4.10}
\end{array}
$$

option 2: p:50000

$$
\begin{aligned}
& t=10 \\
& n=12 \\
& r=9 \%
\end{aligned}
$$

$$
A=50000\left(1+\frac{0.09}{12}\right)^{12.10}
$$

$$
A=122567.85
$$

OPTION I BETTER BY $\$ 25425.85$

$$
\begin{aligned}
& \text { compounded daily? } \\
& \text { Compound interest } A=P\left(1+\frac{c}{n}\right)^{n \cdot t}
\end{aligned}
$$

Workplace Math 11
11. John started an RRSP on January $1^{\text {st }}, 2013$, with a deposit of $\$ 2500$. He added $\$ 1500$ on January $1^{\text {st }}$, 2014, and $\$ 2000$ on January $1^{\text {st }}$, 2015. What is the accumulated value of his account on January $1^{\text {st }}$, 2016, if the interest is 6% compounded quarterly?

$$
\begin{aligned}
& \text { Jap }{ }^{10+} 2013 \\
& A=2500(1+0.06 / 4)^{4.1} \\
& r=0.06 \\
& A=2653.41 \\
& n=4 \\
& \text { Jo. 2014: } 2653.41+1500=4153.41 \\
& A=4153.41(1+0.06 / 4)^{4.1} \\
& N=4408.28 \\
& \text { Jap 2015: } \quad 4408.28+2000=6408.28 \\
& A=6408.28(1+0.06 / 4)^{21.1} \\
& =6801.51 \\
& \$ 6801.51
\end{aligned}
$$

