Section 1.4 - Interest and Compound Interest - Savings

Simple Interest

- Interest money that is added to the PRINCIPAL (money invested or borrowed)
- It is decided based on a given percentage rate
- Low Interest Rates
- Awesome for a borrower, you pay less to the lender
- Bad if you are trying to grow interest on savings
- High Interest Rates
- Brutal/Crippling for a borrower, you pay more to the lender
- Great if it is interest earned in savings
- Simple Interest is calculated this way: $\quad \boldsymbol{I}=\boldsymbol{P r} \boldsymbol{t}$
- I: is the amount of interest calculated
- P: is the Principal (the amount of money borrowed or saved)
- r : is the Percentage Rate, expressed as a decimal $(25 \%=0.25)$
- t : is Time, in years

Example: How much interest is paid over a 3 year period on $\$ 5000$ at a APR (Annual Percentage Rate) of 3% ?

Solution: $\quad I=\operatorname{Prt}$
Here:

$$
\begin{aligned}
& P=\$ 5000 \\
& I=(5000)(0.03)(3) \\
& I=450
\end{aligned}
$$

$$
t=3
$$

$$
r=3 \%=0.03
$$

So in 5 years without touching the money, you earn an extra $\$ 450$

- You can simply flip the scenario to borrowing and if you borrowed $\$ 5000$ you would owe an extra $\$ 450$ back on top of the $\$ 5000$
- You can also use algebra to manipulate the equation to solve for P, r, or t

Example: What Principal at 4.75% will earn interest of $\$ 27.15$ in 9 months?
Solution: \quad Since $\boldsymbol{I}=\boldsymbol{P r t}, \quad$ We need \boldsymbol{P} alone, and doing algebra give us:

$$
\frac{I}{r t}=P
$$

and since Time in in years, 9 months means 9 out of 12 months,

$$
\frac{9}{12} \text { of a year } \quad \text { Or.... } \quad \frac{3}{4} \text { years }
$$

So...

$$
P=\frac{I}{r t} \rightarrow \frac{27.15}{(0.0475)\left(\frac{3}{4}\right)} \rightarrow \$ 762.11
$$

Compound Interest

* Compound Interest is much more complicated. You build/owe on the Principal + the Interest earned in a compounding period
- It can be used to your benefit when savings
- It can drown you when it's used against your debt
- Compound Interest is calculated this way: $\quad A=P\left(1+\frac{r}{n}\right)^{n(t)}$
- A : is the final amount earned
- \quad : is the Principal (the initial amount of money borrowed or saved)
- $\quad r$: is the Yearly Percentage Rate, expressed as a decimal $(25 \%=0.25)$
- n : is the number of times yearly interest is compounded per year
- $\quad t$: is time, in years
- Compounding periods means the number times the interest is calculated in a year
- Yearly: $n=1$
- Quarterly: $n=4$
- Monthly: $n=12$
- Daily: $n=365$

Example: Find the interest earned if $\$ 6500$ is deposited in an account paying 6\% compounded monthly for 5 years

Solution: $\boldsymbol{A}=\boldsymbol{P}\left(\mathbf{1}+\frac{r}{n}\right)^{\boldsymbol{n}(t)}$ so we sub in for the information given to fins the solution

$$
A=6500\left(1+\frac{0.06}{12}\right)^{12(5)} \quad \rightarrow \quad A=6500(1.005)^{60} \quad \rightarrow \quad A=\$ 8767.53
$$

- The interest is: $\quad I=A-P \quad \rightarrow \quad \$ 8767.53-\$ 6500=\$ 2267.53$

Example: What is the initial investment needed to become a millionaire in 25 years if interest is 12% compounded quarterly?

Solution: $\boldsymbol{A}=\boldsymbol{P}\left(\mathbf{1}+\frac{r}{n}\right)^{\boldsymbol{n}(t)}$ so we calculated what we can then use algebra to find the unknown $1000000=P\left(1+\frac{0.12}{4}\right)^{4(25)} \rightarrow \quad 1000000=P(1.03)^{100} \quad \rightarrow \quad P=\frac{\$ 1000000}{(1.03)^{100}}$
$P=\$ 52032.84 \quad$ You only need to invest $\$ \mathbf{5 2} 032.84$ to be a millionaire in 25 years

Example: What is the difference in earnings on an investment of $\$ 8000$ for 10 years at 6% compounded yearly, monthly, and daily?

Solution:

Yearly	Monthly	Daily
$A=P\left(1+\frac{r}{n}\right)^{n(t)}$	$A=P\left(1+\frac{r}{n}\right)^{n(t)}$	$A=P\left(1+\frac{r}{n}\right)^{n(t)}$
$A=8000\left(1+\frac{0.06}{1}\right)^{1(10)}$	$A=8000\left(1+\frac{0.06}{12}\right)^{12(10)}$	$A=8000\left(1+\frac{0.06}{365}\right)^{365(10)}$
$A=\$ 14326.78$	$A=\$ 14555.17$	$A=\$ 14576.23$

Section 1.4 - Practice Problems

Given the information provided, solve for Interest

1. $P=\$ 4500 \quad r=12 \% \quad t=3 y r s \quad I=$?
2. $P=\$ 47200 \quad r=3 \% \quad t=5$ yrs $\quad I=?$
3. $P=\$ 12250 \quad r=6.2 \% \quad t=6$ mnths $I=$?
4. $\quad P=\$ 200 \quad r=28 \% \quad t=6 y r s \quad I=$?

Given the information provided, solve for the missing value
5. $P=? \quad r=7.5 \% \quad t=4 y r s \quad I=\$ 150.30$
7. $P=\$ 2500 \quad r=? \quad t=5$ yrs $I=\$ 675$
6. $P=\$ 4800 \quad r=? \quad t=4$ mnths $\quad I=\$ 12$
8. $P=\$ 1250000 \quad r=8 \% \quad I=\$ 400000 \quad t=$?
9. What amount will an account have after 4 years, if $\$ 7500$ is invested at an annual rate of 8% compounded daily?
10. An investment opportunity of $\$ 50000$ for 10 years has two options: the first pays 11% compounded quarterly, the second pays 9% compounded monthly. Which is the belter investment, and by how much?
11. John started an RRSP on January $1^{\text {st }}, 2013$, with a deposit of $\$ 2500$. He added $\$ 1500$ on January $1^{\text {st }}$, 2014, and $\$ 2000$ on January $1^{\text {st }}, 2015$. What is the accumulated value of his account on January $1^{\text {st }}$, 2016, if the interest is 6% compounded quarterly?

Section 1.4 - Answer Key

1. $\$ 1620$
2. $\$ 379.75$
3. $\$ 7080$
4. $\$ 336$
5. $\$ 501$
6. 0.75%
7. 5.4%
8. $4 y r s$
9. $\$ 10328.10$
10. 11% one is better by $\$ 25425.85$
11. $\$ 6801.51$
