Section 1.3 - Inductive and Deductive Reasoning

This booklet belongs to: \qquad Block: \qquad

Inductive Reasoning

\checkmark Inductive Reasoning is when we reach conclusions by observation
\checkmark We try using inductive reasoning to establish a GENERAL EQUATION for different patterns
Example: Predict the $\boldsymbol{n}^{\text {th }}$ term in the following pattern

$$
3,6,12,24, \ldots
$$

Solution:

$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$
3	6	12	24

- Do you see a pattern?
- Let's try a couple ideas

Multiples of 3?
$3 * 1=3$
$3 * 2=6$
$3 * 3=9$
$3 * 4=12$
Not this pattern

Looks like the pattern above goes up by a factor of $\mathbf{2 !}$ So let's try this:
$3 * 1=3$
$3 * 2=6$
$3 * 2(2)=12$
$3 * 2(2)(2)=24$

This pattern looks good!

```
Think Exponents:
```

$2^{\mathbf{0}}=1 \quad \boldsymbol{n}-\mathbf{1}=\mathbf{0}$
$2^{1}=2$
$\boldsymbol{n}-\mathbf{1}=1$
$2^{2}=2 * 2$
$\boldsymbol{n}-\mathbf{1}=2$
$2^{3}=2 * 2 * 2 \quad \boldsymbol{n}-\mathbf{1}=3$
n is the term number!!

So let's generalize this:
\checkmark If my pattern goes up by a factor of two, then we are talking exponents!

$$
3 * 2^{n-1}
$$

n is the PLACE HOLDER for the term in the sequence

Example: What is the $n^{\text {th }}$ tern of the pattern?

$$
2,8,14,20, \ldots
$$

Solution:

Let's look at what we have (in multiple ways):

$1 s t$	$2 n d$	$3 r d$	4 th
2	8	14	20
2	$2+6$	$2+12$	$2+18$
2	$2+6(1)$	$2+6(2)$	$2+6(3)$

So, looks like the multiple of $\mathbf{6}$ is our place holder \boldsymbol{n}, but one less, so $\mathbf{n - 1}$

- That way our general equation is:

$$
2+6(n-1)
$$

- But if we do a bit of algebra

$$
2+6 n-6
$$

This is:

$$
6 n-4
$$

Example: Predict the $n^{\text {th }}$ term if the pattern 2, 6, 12, 20, 30, 42, ...
Solution: \quad Notice the pattern does not have a constant increase, so the $n^{\text {th }}$ term isn't linear

$1 s t$	$2 n d$	$3 r d$	4 th	5 th	6 th
2	6	12	20	30	42
$1 \cdot 2$	$2 \cdot 3$	$3 \cdot 4$	$4 \cdot 5$	$5 \cdot 6$	$6 \cdot 7$

So here we see the $n^{\text {th }}$ term is: $\quad n(n+1)$ or $n^{2}+n$.

Counterexamples

- We can also prove general statements false by providing Counterexamples

Example:

All apples are green

Counterexample:

All I need to do is find an apple that is red, yellow, or any colour other than green.

Find some Counterexamples

i) Every prime Number is odd.

- 2 is a prime number and is even
ii) A triangle drawn from two corners of a square is half the area of the square
- True

- Not True

iii) Multiplying leads to large numbers
- Multiplying by zero leads to zero
- Multiplying by 1 leads to the same number
- Multiplying by a proper fraction gives a smaller number

Deductive Reasoning

\checkmark Deductive Reasoning is the method of arriving at conclusions from accepted facts
\checkmark Each step in Deductive Reasoning represents conclusions from the statement the came before
\checkmark If any steps are in error, then the final solution is FALSE

Example:

Premise

\checkmark All planets move around the sun in an elliptical orbit
\checkmark Saturn is a planet

Conclusion

\checkmark Saturn moves around the sun in an elliptical orbit

Premise

\checkmark If n is a prime number greater than 3 , then $(n+1)(n-1)$ is divisible by 24
$\checkmark 47$ is a prime number

Conclusion

$\checkmark \quad(48)(46)=2208$
$\checkmark \quad 2208$ is divisible by 24

Premise

\checkmark All English teachers like to read
\checkmark Sam does not like to read
Conclusion? Sam is not an English teacher
Premise
\checkmark If a quadrilateral is a square, it is a regular polygon
\checkmark A regular polygon has all sides and angles equal
Conclusion? A square has all sides and angles equal

Example: Are the following statements true? If not provide a counterexample.
\checkmark Every even number divisible by 6 is divisible by 3 .
True!
\checkmark A number bigger than 12 is divisible by 12 if it is divisible by 2 and 3
False! (18 is divisible by 2 and 3 , but not 12)

- We need to be careful; we also can't deduce information just because we have a statement.
- Be careful not to jump to conclusions.

Premise

\checkmark A person must be 16 years old to have a driver's license.
\checkmark What can we deduce about the following:

- Fred has a drivers license
- Mike drives a car
- Kevin is 20
- Aurora is 12
- Phil does not drive a car

Solution

- Fred is 16 years old or older
- Nothing, just because he drives doesn't mean he has a license
- Nothing
- Aurora foes not have a drivers license
- Nothing

Section 1.3 - Practice Questions

Study the pattern, predict the $n^{\text {th }}$ term.

1. $1,2,3, \ldots$,
2. $1,3,5, \ldots$,
3. $3,7,11,15, \ldots$,
4. $2,4,6, \ldots$,
5. $10,17,24,31, \ldots, \square$
6. $0,6,12,18, \ldots$, \qquad
7. $0,2,6,12, \ldots, \ldots$
8. $1,6,15,28, \ldots$, \qquad

Determine the number of matchsticks in the $n^{t h}$ pattern
9.

10.

11.

\qquad
12.

Study the pattern and predict the $n^{\text {th }}$ term
13.

15.
16.

When possible, find a counter example. If not write 'true'
17. The acute angles in a right triangle are equal
18. A real number to the zero power is one
20. The second power of any real number is positive
22. An even number is any number which is not odd

Tell whether the statement is true or false. If false, give a counterexample
23. If a triangle has two equal sides, then it has equal angles
24. If two triangles have equal perimeters, then they have equal sides
26. The diameter is the axis of symmetry of a circle
25. If $x^{2}>0$, then $x>0$
27. A number is divisible by 4 if the last digit is divisible by 4
29. A number is divisible by 15 if it is an odd number divisible by 5
28. A number is divisible by 12 if it is an even number divisible by 3 .
30. A number is divisible by 18 if it is an even number divisible by 9

Reach a conclusion using the following assumptions

31. All citizens of Calgary are Albertans	
All Albertans are Canadians	32. All Manitobans are fishermen Sue is a Manitoban
33. All rectangles are quadrilaterals All squares are rectangles	All mammals can swim All whales are mammals
35. If you study for the exam you will pass You study for the exam	36. a is greater than b b is equal to c

Use deductive reasoning to reach a conclusion based on the given assumption of a triangle (Every question represents an independent scenario)
37. One angle is 80°
39. All 3 angles are equal
41. The middle angle is 10° more than the smallest angle, which is half the amount of the largest angle
43. All members of the volleyball team are over 6 feet tall. What, if anything, can you deduce with a certainty about each person?
a) Sue is on the Volleyball Team
b) Tom is over 6ft tall
c) Mary is $5^{\prime} 6^{\prime \prime}$ tall
d) Bert is not on the Volleyball Team
38. One angle is 80° and the other 2 angles are equal
40. All three angles are consecutive integers
42. What is the sum of the angles in a pentagon? (5 sides)
44. A person must be 12 years old or over to have a fishing license. What can be deduced with certainty about each person?
a) Sally has a fishing license
b) Bill went fishing
c) Lora is 15 years old
d) George is under 12 years old
e) Tim does not fish

Answer Key - Section 1.3

| 1. n | 2. $2 n-1$ | 3. $2 n$ | 4. $4 n-1$ | 5. $7 n+3$ | $6 . \quad 6 n-6$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7. $n(n-1)$ | $8 . ~ n(2 n-1)$ | 9. $3 n+1$ | $10.5 n+1$ | $11.4 n+1$ | $12.6 n+1$ | |
| $13.8 n$ | $14.4 n-3$ | $15 . \frac{n(n+1)}{2}$ | $16 . \frac{(n+1)(n+2)}{2}$ | | | |

For 17 - 44: \quad See Website

Extra Work Space

