
Section 1.3 – Inductive and Deductive Reasoning

This booklet belongs to:______Block:_____

Inductive Reasoning

- Inductive Reasoning is when we reach conclusions by observation
- ✓ We try using inductive reasoning to establish a **GENERAL EQUATION** for different patterns

✓ If my pattern goes up by a factor of two, then we are talking exponents!

 $3 * 2^{n-1}$

n is the **PLACE HOLDER for the term in the sequence**

Example: What is the n^{th} tern of the pattern?

2, 8, 14, 20, ...

Solution:

Let's look at what we have (in multiple ways):

1 <i>st</i>	2nd	3rd	4th
2	8	14	20
2	2 + 6	2 + 12	2 + 18
2	2 + 6(1)	2 + 6(2)	2 + 6(3)

So, looks like the **multiple of 6** is our **place holder n**, but one less, so **n-1**

• That way our **general equation** is:

$$2 + 6(n - 1)$$

But if we do a bit of algebra

2 + 6n - 6

This is:

6*n* – 4

Example: Predict the n^{th} term if the pattern 2, 6, 12, 20, 30, 42, ...

Solution: Notice the pattern does not have a constant increase, so the n^{th} term **isn't linear**

1st	2nd	3rd	4th	5th	6th
2	6	12	20	30	42
1 · 2	2 · 3	3 · 4	4 · 5	5.6	6 · 7

So here we see the n^{th} term is: n(n+1) or $n^2 + n$.

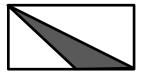
Counterexamples

• We can also prove general statements false by providing Counterexamples

Example:

All apples are green

Counterexample:


All I need to do is find an apple that is red, yellow, or any colour other than green.

Find some Counterexamples

- i) Every prime Number is odd.
 - 2 is a prime number and is even
- ii) A triangle drawn from two corners of a square is half the area of the square

- Not True

- iii) Multiplying leads to large numbers
 - o Multiplying by zero leads to zero
 - Multiplying by 1 leads to the same number
 - o Multiplying by a proper fraction gives a smaller number

Deductive Reasoning

- ✓ Deductive Reasoning is the method of arriving at conclusions from accepted facts
- ✓ Each step in Deductive Reasoning represents **conclusions** from the **statement the came before**
- ✓ If any steps **are in error**, then the **final solution is FALSE**

Example:

Premise

- ✓ All planets move around the sun in an elliptical orbit
- ✓ Saturn is a planet

Conclusion

✓ Saturn moves around the sun in an elliptical orbit

Premise

- ✓ If *n* is a prime number greater than 3, then (n + 1)(n 1) is divisible by 24
- ✓ 47 is a prime number

Conclusion

- ✓ (48)(46) = 2208
- ✓ 2208 is divisible by 24

Premise

- ✓ All English teachers like to read
- ✓ Sam does not like to read

Conclusion? Sam is not an English teacher

Premise

- \checkmark If a quadrilateral is a square, it is a regular polygon
- ✓ A regular polygon has all sides and angles equal

Conclusion? A square has all sides and angles equal

Example: Are the following statements true? If not provide a counterexample.

 \checkmark Every even number divisible by 6 is divisible by 3.

True!

✓ A number bigger than 12 is divisible by 12 if it is divisible by 2 and 3

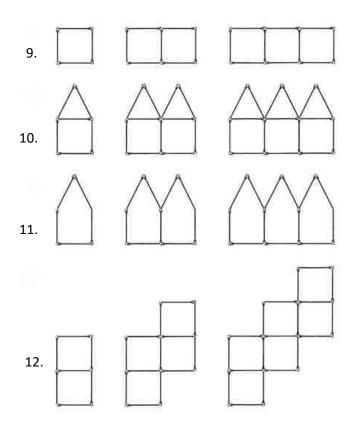
False! (18 is divisible by 2 and 3, but not 12)

- We need to be careful; we also can't deduce information just because we have a statement.
- Be careful not to jump to conclusions.

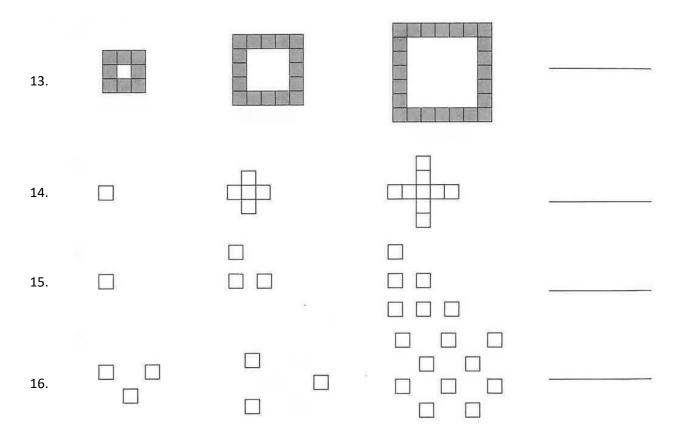
Premise

- ✓ A person must be 16 years old to have a driver's license.
- ✓ What can we deduce about the following:
 - o Fred has a drivers license
 - Mike drives a car
 - o Kevin is 20
 - o Aurora is 12
 - Phil does not drive a car

Solution


- Fred is 16 years old or older
- Nothing, just because he drives doesn't mean he has a license
- Nothing
- Aurora foes not have a drivers license
- Nothing

Section 1.3 – Practice Questions


Study the pattern, predict the n^{th} term.

1. 1, 2, 3,,	2. 1, 3, 5,,
3. 2, 4, 6, ,	4. 3, 7, 11, 15, ,
5. 10, 17, 24, 31,,	6. 0, 6, 12, 18, ,
7. 0, 2, 6, 12, ,	8. 1, 6, 15, 28, ,

Determine the number of matchsticks in the n^{th} pattern

Study the pattern and predict the n^{th} term

When possible, find a counter example. If not write 'true'

17. The acute angles in a right triangle are equal	18. A real number to the zero power is one
19. For any real number $x, x^2 > x$	20. The second power of any real number is positive
21. For any real number, x , $-x$, is a negative	22. An even number is any number which is not odd

Tell whether the statement is true or false. If false, give a counterexample

23. If a triangle has two equal sides, then it has equal angles	24. If two triangles have equal perimeters, then they have equal sides
25. If $x^2 > 0$, then $x > 0$	26. The diameter is the axis of symmetry of a circle
27. A number is divisible by 4 if the last digit is divisible by 4	28. A number is divisible by 12 if it is an even number divisible by 3.
29. A number is divisible by 15 if it is an odd number divisible by 5	30. A number is divisible by 18 if it is an even number divisible by 9

Reach a conclusion using the following assumptions

31. All citizens of Calgary are Albertans	32. All Manitobans are fishermen
All Albertans are Canadians	Sue is a Manitoban
33. All rectangles are quadrilaterals	34. All whales are mammals
All squares are rectangles	All mammals can swim
35. If you study for the exam you will pass	36. <i>a</i> is greater than <i>b</i>
You study for the exam	<i>b</i> is equal to <i>c</i>

Use deductive reasoning to reach a conclusion based on the given assumption of a triangle (Every question represents an independent scenario)

37. One angle is 80°	38. One angle is 80° and the other 2 angles are equal
39. All 3 angles are equal	40. All three angles are consecutive integers
41. The middle angle is 10° more than the smallest angle, which is half the amount of the largest angle	42. What is the sum of the angles in a pentagon? (5 sides)
43. All members of the volleyball team are over 6 feet tall. What, if anything, can you deduce with a certainty about each person?	44. A person must be 12 years old or over to have a fishing license. What can be deduced with certainty about each person?
a) Sue is on the Volleyball Team	a) Sally has a fishing license
b) Tom is over 6ft tall	b) Bill went fishing
c) Mary is 5'6" tall	c) Lora is 15 years old
d) Bert is not on the Volleyball Team	d) George is under 12 years old
	e) Tim does not fish

Answer Key – Section 1.3

1. <i>n</i>	2. $2n-1$	3. 2 <i>n</i>	4. $4n - 1$	5. $7n + 3$	6. $6n - 6$
7. $n(n-1)$	8. $n(2n-1)$	9. $3n + 1$	10. $5n + 1$	11. $4n + 1$	12. 6 <i>n</i> + 1
13. 8n	14. $4n - 3$	15. $\frac{n(n+1)}{2}$	16. $\frac{(n+1)(n+2)}{2}$		

For 17 – 44: *See Website*

Extra Work Space