Section 1.3 – Perfect Squares, Cubes, and their Roots

This booklet belongs to: ___________________________ Block: ______

Squares and square roots

- To **square** a number is to raise the number to the **second** power
- A perfect Square then has **2 identical factors**

Example:

\[
4^2 = 4 \cdot 4 = 16 \\
9^2 = 9 \cdot 9 = 81
\]

- The identical factors are called the **square root** of a number
- The number with the rational square roots are called **perfect squares**
- We use the ‘radical’ or ‘house’ symbol \(\sqrt{}\) to indicate square roots

Example: Determine which of the following are perfect squares.

\[
a) \quad 49 \\
b) \quad \frac{4}{9} \\
c) \quad 7 \\
d) \quad \frac{4}{15}
\]

Solution:

- a) Yes, because \(7 \cdot 7 = 49\), **two identical factors**

- b) Yes, because \(\frac{2}{3} \cdot \frac{2}{3} = \frac{4}{9}\), **two identical factors**

- c) No, because 7 cannot be written as the product of two identical factors

- d) No, because \(\frac{4}{15}\) cannot be written as the product of two identical factors
Determining square roots sans calculator

Using a Factor Tree

Example: Determine the square root of 196

\[
\begin{align*}
196 & \quad \text{or} \quad 196 \\
2 & \quad 98 \\
| & \quad | \\
2 & \quad 49 \\
| & \quad | \\
7 & \quad 7
\end{align*}
\]

\[
\sqrt{196} = \sqrt{2 \cdot 2 \cdot 7 \cdot 7} = \sqrt{2 \cdot 2} \cdot \sqrt{7 \cdot 7} = 2 \cdot 7 = 14
\]

NOTE: For whole numbers \(\sqrt{x^2} = \sqrt{x} \cdot x = x \)

Example: Determine the square root of 225

\[
\begin{align*}
225 & \quad 45 \\
5 & \quad 9 \\
| & \quad | \\
3 & \quad 3
\end{align*}
\]

\[
\sqrt{225} = \sqrt{3 \cdot 3 \cdot 5 \cdot 5} = \sqrt{3 \cdot 3} \cdot \sqrt{5 \cdot 5} = 3 \cdot 5 = 15
\]
Cubes and Cube Roots

- To cube a number is to raise the number to the third power

Example:

\[4^3 = 4 \cdot 4 \cdot 4 = 64 \]
\[7^3 = 7 \cdot 7 \cdot 7 = 343 \]

- Some numbers can be written as the product of three identical factors

 - \[27 = 3 \cdot 3 \cdot 3 \]
 - \[125 = 5 \cdot 5 \cdot 5 \]

- The identical factors are called the cube root of a number
- The number with the rational square roots are called perfect cubes
- We use the ‘radical’ or ‘house’ symbol \(\sqrt[3]{} \) to indicate cube roots

Example: Determine which are perfect cubes.

\[\begin{array}{cccc}
 a) 8 & b) \frac{27}{64} & c) 25 & d) \frac{8}{9} \\
\end{array} \]

Solution:

- a) Yes, because \(2 \cdot 2 \cdot 2 = 8 \), three identical factors

- b) Yes, because \(\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{27}{64} \), three identical factors

- c) No, because 25 cannot be written as the product of three identical factors

- d) No, because \(\frac{8}{9} \) cannot be written as the product of three identical factors
Determining cube roots sans calculator

Using a Factor Tree

Example: Determine the cube root of 216

\[
\begin{array}{c}
\sqrt[3]{216} = \sqrt[3]{2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3} = 2 \cdot 3 = 6
\end{array}
\]

Example: Determine the cube root of 512

\[
\begin{array}{c}
\sqrt[3]{512} = \sqrt[3]{2 \cdot 2 \cdot 2} = 8
\end{array}
\]

Note: For whole numbers $\sqrt[3]{x^3} = x$.

Note: In the expression $\sqrt[k]{a}$, we call k the index, and assume $k \geq 2$. If the index is not written, the expression is assumed to be a square root, i.e. $k = 2$.

Example: $\sqrt[5]{32} = 2$ because $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 32$, five identical factors.
Section 1.3 – Practice Questions

1. Find the square root of the perfect squares without a calculator

 a) \(\sqrt{100} \)
 b) \(\sqrt{441} \)
 c) \(\sqrt{225} \)
 d) \(\sqrt{361} \)
 e) \(\sqrt{529} \)
 f) \(\sqrt{2890000} \)

2. Find the cube root of the perfect cubes without a calculator

 a) \(\sqrt[3]{27} \)
 b) \(\sqrt[3]{1000} \)
 c) \(\sqrt[3]{343} \)
 d) \(\sqrt[3]{1728} \)
3. Find the perfect square root, if it exists, without a calculator

a) 25

b) 29

c) 80

d) 81

e) 169

f) 99

g) 1600

h) 900

i) \(\frac{81}{400} \)

j) \(\frac{8}{18} \)
4. Find the perfect cube root, if it exists, without a calculator

a) 8
b) 9
c) 64
d) 81
e) 100
f) 216
g) 1000
h) 144
i) 625
j) 729

5. The area of a rectangle with a length twice as long as the width is 1250m^2. Determine the length and the width of the rectangle.
6. A cube has a volume of $216\,cm^3$. Determine the length of each side of the cube.

7. A rectangular solid has a length three times the width and a height twice its width. If the volume of the rectangle solid is $384\,in^3$, determine the dimensions of the rectangular solid.
Answer Key

Section 1.3

1.
 a) 10
 b) 21
 c) 15
 d) 19
 e) 23
 f) 1700

2.
 a) 3
 b) 10
 c) 7
 d) 12
 e) 15
 f) 20

3.
 a) 5
 b) \textit{DNE}
 c) \textit{DNE}
 d) 9
 e) 13
 f) \textit{DNE}
 g) 40
 h) 30
 i) \frac{9}{20}
 j) \frac{3}{5}

4.
 a) 2
 b) \textit{DNE}
 c) 4
 d) \textit{DNE}
 e) \textit{DNE}
 f) 6
 g) 10
 h) \textit{DNE}
 i) \textit{DNE}
 j) 9

5.
 \[l = 50m \]
 \[w = 25m \]

6.
 6cm

7.
 \[l = 12\text{in} \]
 \[h = 8\text{in} \]
 \[w = \frac{9}{4}\text{in} \]