Section 1.2 – Patterns

This booklet belongs to: _____ Block: _____

- ✓ Mathematical **logic** can help us determine specific patterns
- We don't always need to know the equation of the pattern, but we subtly use our logic to deduce it
- ✓ Do you remember this equation y = mx + b?
- ✓ This equation represents the **pattern of a straight line**.
- ✓ The *x* and *y* are the variables that represents the input and output (place holder and result)

Example: What are the next two numbers?

1, 3, 5, 7, ... , ...

Now, what is the equation that represents this pattern?

✓ Remember that you have a variable as a place holder

- \circ i.e. 1st position, 2nd position, etc.
- ✓ You also have a variable that is the result

So, what is the equation?

Example:	Find the pattern
	1 * 1 = 1
	11 * 11 = 121
	111 * 111 = 12321
	1111 * 1111 =
	11111 * 11111 =
Solution:	Can you see the pattern?
Next two line	s are:
	1234321, 123454321

y = 2n - 1

Section 1.2 – Practice Problems

Study the Pattern and predict the missing values

1. $9 \cdot 9 + 7 = 88$	2. $9^2 = 81$
$98 \cdot 9 + 6 = 888$	$99^2 = 9801$
$987 \cdot 9 + 5 =$	$999^2 = 998001$
$9876 \cdot 9 + 4 =$	$9999^2 =$
$98765 \cdot 9 + 3 =$	$99999^2 =$
3. $1^{2} + 1 + 2 = 4$	4. $1 = 1$
$2^{2} + 2 + 3 = 9$	1 + 2 = 3
$3^{2} + 3 + 4 = 16$	1 + 2 + 3 = 6
$4^{2} + 4 + 5 =$	1 + 2 + 3 + 4 = 10
$5^{2} + 5 + 6 =$	$1 + 2 + 3 + \dots + 10 =$
5. $1 = 1$ 1 + 3 = 4 1 + 3 + 5 = 9 $1 + 3 + 5 + \dots + 15 =$	6. $2 = 2$ 2 + 4 = 6 2 + 4 + 6 = 12 2 + 4 + 6 + 8 = $2 + 4 + 6 + \dots + 16 =$

Study the Pattern, and predict the next two terms

7. 2, 3, 5, 8, 12,,	8. 20, 25, 31, 38, 46,,
9. 10, 7, 12, 9, 14,,	10. 3, 6, 11, 18, 27, 38,,
11. 2, 6, 15, 31, 56,,,	12. 2, 6, 12, 20, 30,,
13. 15, 19, 25, 33, 43,,	14. 1, 2, 5, 14, 41,,
15. 3, 5, 11, 29, 83,,	16. 59, 52, 55, 48, 51, 44, 47,,

What pattern can you notice in the following (Think about odd and even

17. 5 + 7 = 12 and 47 + 31 = 78

18. 4 + 12 = 16 and 42 + 16 = 58

19. 6 + 7 = 13 and 14 + (-17) = -3

20. Determine the number of matchsticks or squares in the 100^{th} pattern

Answer Key – Section 1.2

1.	8888, 88888, 888888	2.	99980001,9999800001	3.	25,36	4.	55
5.	64	6.	20,72	7.	17,23	8.	55,65
9.	11,16	10.	51,66	11.	92,141	12.	42,56
13.	55,69	14.	122,365	15.	245,731	16.	40,43
17.	See Website	18.	See Website	19.	See Website		

20.

a) 301	b) 501	c) 401	d) 601
e) 800	f) 397	g) 5050	h) 5151

Extra Work Space