Section 1.2 – Multiplication and Division of Fractions

This booklet belongs to:______Block: _____

Multiplication of Fractions

• It is simply TOPS with TOPS and BOTTOMS with BOTTOMS

Numerator * Numerator

Denominator * Denominator

Example: $\frac{2}{3} \cdot \frac{5}{7} = \frac{2 \cdot 5}{3 \cdot 7} = \frac{10}{21}$

Example: $\frac{-5}{9} \cdot \frac{1}{4} = \frac{-5 \cdot 1}{9 \cdot 4} = \frac{-5}{36} = -\frac{5}{36}$

Example: $\frac{4}{-7} \cdot \frac{-3}{5} = \frac{4 \cdot -3}{-7 \cdot 5} = \frac{-12}{-35} = \frac{12}{35}$

Example: $-\frac{1}{5} \cdot \frac{6}{11} = \frac{-1 \cdot 6}{5 \cdot 11} = \frac{-6}{55} = -\frac{6}{55}$

Now, what we can do though is **SIMPLIFY BEFORE WE MULTIPLY** the question first by **identifying the Common Factors**, just like when we **simplified individual fractions**.

Example:

 $\frac{14}{49}$ can be written as: $\frac{2 \cdot 7}{7 \cdot 7}$ and since $\frac{7}{7}$ is equal to 1 what we have left is:

 $\frac{2}{7} \cdot 1 = \frac{2}{7}$ see how we cancelled out the common factors

We can do the same steps before we multiply

Example 1: $\frac{2}{7} \cdot \frac{5}{8}$

Solution 1:

$$\frac{2}{7} \cdot \frac{5}{8} \rightarrow \frac{2}{7} \cdot \frac{5}{2 \cdot 4} \rightarrow \frac{2 \cdot 5}{2 \cdot 4 \cdot 7} \rightarrow \frac{\cancel{2} \cdot 5}{\cancel{2} \cdot 4 \cdot 7} \rightarrow \frac{5}{4 \cdot 7} = \frac{5}{28}$$

Example 2: $\frac{5}{12} \cdot \frac{3}{20}$

Solution 2:

$$\frac{5}{12} \cdot \frac{3}{20} \rightarrow \frac{5}{3 \cdot 4} \cdot \frac{3}{4 \cdot 5} \rightarrow \frac{5 \cdot 3}{3 \cdot 4 \cdot 4 \cdot 5} \rightarrow \frac{\cancel{5} \cdot \cancel{3}}{\cancel{3} \cdot 4 \cdot 4 \cdot \cancel{5}} \rightarrow \frac{1}{4 \cdot 4} = \frac{1}{16}$$

Example 3:
$$-\frac{2}{3} \cdot \frac{9}{14}$$

Remember $(-2) = (-1) \cdot 2$

Solution 3: $\frac{-2}{3} \cdot \frac{9}{14} \rightarrow \frac{-2}{3} \cdot \frac{3 \cdot 3}{2 \cdot 7} \rightarrow \frac{(-1)2 \cdot 3 \cdot 3}{3 \cdot 2 \cdot 7} \rightarrow \frac{(-1)2 \cdot 3 \cdot 3}{3 \cdot 2 \cdot 7} \rightarrow \frac{(-1)2 \cdot 3 \cdot 3}{7} = \frac{-3}{7} = -\frac{3}{7}$

Example 4: $\frac{21}{36} \cdot \frac{42}{153}$

Solution 4:

$$\frac{21}{36} \cdot \frac{42}{153} \rightarrow \frac{3 \cdot 7}{6 \cdot 6} \cdot \frac{6 \cdot 7}{3 \cdot 3 \cdot 17} \rightarrow \frac{3 \cdot 7 \cdot 6 \cdot 7}{6 \cdot 6 \cdot 3 \cdot 3 \cdot 17} \rightarrow \frac{\cancel{3} \cdot 7 \cdot \cancel{6} \cdot 7}{\cancel{6} \cdot 6 \cdot \cancel{3} \cdot 3 \cdot 17} \rightarrow \frac{7 \cdot 7}{6 \cdot 3 \cdot 17} = \frac{49}{306}$$

Example 5:
$$-\frac{6}{12} \cdot -\frac{2}{3}$$

Solution 5:

$$\frac{-6}{12} \cdot \frac{-2}{3} \rightarrow \frac{(-1) \cdot 2 \cdot 3}{2 \cdot 2 \cdot 3} \cdot \frac{(-1) \cdot 2}{3} \rightarrow \frac{(-1) \cdot 2 \cdot 3 \cdot (-1) \cdot 2}{2 \cdot 2 \cdot 3 \cdot 3} \rightarrow \frac{(-1) \cdot 2 \cdot 3 \cdot (-1) \cdot 2}{\cancel{2} \cdot \cancel{2} \cdot \cancel{3} \cdot \cancel{3}}$$

$$= \frac{1}{3}$$

Division of Fractions

• First, I'll show you the somewhat complicated but quite gorgeous method.

You may have been told somewhere along the line that dividing fractions is **just flipping the second fraction** and **changing the division sign to multiplication**, how many of you heard this before?

Do you know why?

Here's why.

Example:

 $\frac{1}{2} \div \frac{2}{3}$ well the fraction bar essentially means division so we can rewrite this as ...

 $\frac{1}{\frac{2}{2}}$ yes it is one big fraction, made up of two fractions

• Now let's make this into an **equivalent fraction** with a denominator of one. Remember that in order for it to be equivalent we need to multiply the big fraction by 1.

$$\frac{\frac{1}{2} \cdot \frac{3}{2}}{\frac{2}{3} \cdot \frac{3}{2}}$$
 this second portion is equal to 1

So, what do we get...

$$\frac{\frac{1}{2} \cdot \frac{3}{2}}{\frac{6}{6}} = \frac{\frac{1}{2} \cdot \frac{3}{2}}{1} = \frac{1}{2} \cdot \frac{3}{2}$$

We ended up with,

$$\frac{1}{2} \cdot \frac{3}{2}$$

So, what has happened? The division symbol changed to multiplication and the fraction flipped.

And the result is:

$$\frac{1}{2} \cdot \frac{3}{2} = \frac{3}{4}$$

Now here is another method, the logic here is awesome...

Consider our starting point...

$$\frac{1}{2} \div \frac{2}{3}$$
 how can I divide up pieces if they are the same size?

If I get a **COMMON DENOMINATOR**:

$$\frac{1}{2} = \frac{3}{6}$$
 and $\frac{2}{3} = \frac{4}{6}$

$$\frac{3}{6} \div \frac{4}{6}$$

If you now divide the same sized pieces,

$$\frac{3 \div 4}{6 \div 6} = \frac{3 \div 4}{1} = 3 \div 4$$
 = $\frac{3}{4}$ BOOM!

Example 6:
$$\frac{2}{3} \div \frac{5}{7}$$

Solution 6:

$$\frac{2}{3} \div \frac{5}{7} = \frac{2}{3} \cdot \frac{7}{5} = \frac{14}{15}$$

Denominator Method

$$\frac{2}{3} \div \frac{5}{7} = \frac{14}{21} \div \frac{15}{21} = \frac{14 \div 15}{21 \div 21} = \frac{14 \div 15}{1} = \frac{14}{15}$$

Example 7:
$$\frac{12}{13} \div \frac{6}{11}$$

Solution 7:

$$\frac{12}{13} \div \frac{6}{11} = \frac{12}{13} \cdot \frac{11}{6} = \frac{2}{13} \cdot \frac{11}{1} = \frac{22}{13}$$

Denominator Method

$$\frac{12}{13} \div \frac{6}{11} = \frac{132}{142} \div \frac{78}{142} = \frac{132 \div 78}{142 \div 142} = \frac{132 \div 78}{1}$$
$$= \frac{132}{78} = \frac{66}{39} = \frac{22}{13}$$

Simplified both of these to get our final answer.

Section 1.2 – Practice Questions

Multiply the following, simplify before you multiply if desired, leave answer in simplified form

EMERGING LEVEL QUESTIONS

1.
$$\frac{1}{3} \cdot \frac{12}{7}$$

2.
$$-\frac{8}{9} \cdot \frac{21}{16}$$

3.
$$\frac{12}{14} \cdot \frac{7}{8}$$

4.
$$\frac{8}{25} \cdot \frac{35}{4} \cdot \frac{2}{5}$$

PROFICIENT LEVEL QUESTIONS

$$5. \quad \frac{5}{14} \cdot \left(-\frac{21}{10}\right) \cdot \frac{15}{7}$$

6.
$$-\frac{7}{4} \cdot \frac{2}{21} \cdot \frac{14}{8}$$

EMERGING LEVEL QUESTIONS

Divide the following fractions, simplify when you can, leave answer in simplified form

7.
$$\frac{2}{3} \div \frac{8}{9}$$

8.
$$-\frac{3}{4} \div \frac{15}{8}$$

PROFICIENT LEVEL QUESTIONS

9.
$$\frac{12}{5} \div 4$$

10.
$$4 \div \frac{12}{15}$$

11.
$$\frac{34}{121} \div \frac{17}{55}$$

12.
$$-\frac{38}{27} \div \frac{57}{18}$$

13.
$$-\frac{13}{17} \div \frac{39}{34}$$

$$\frac{343}{125} \div \frac{49}{25}$$

EXTENDING LEVEL QUESTIONS

Answer the following, leave answer as a simplified fraction, improper if applicable

15.
$$3\frac{1}{2} \cdot 2\frac{1}{3}$$

16.
$$3\frac{1}{2} \div 2\frac{1}{3}$$

17.
$$-5\frac{2}{5} \cdot 3\frac{1}{3}$$

$$18. -5\frac{2}{5} \div 3\frac{1}{3}$$

19.
$$3\frac{3}{4} \div 1\frac{1}{8} \cdot 1\frac{2}{25}$$

20.
$$3\frac{1}{4} \div 2\frac{7}{16} \cdot 1\frac{1}{8}$$

Answer Key – Section 1.2

1.	<u>4</u> 7	2.	$-\frac{7}{6}$ or $-1\frac{1}{6}$	3.	3 4	4.	$\frac{28}{25}$ or $1\frac{3}{25}$
	20 20	6.	$-\frac{7}{24}$	7.	3 4	8.	_ ² / ₅
9.	<u>3</u> 5	10.	5	11.	10 11	12.	<u>4</u> 9
13.	$-\frac{2}{3}$	14.			$\frac{49}{6}$ or $8\frac{1}{6}$	16.	$\frac{3}{2}$ or $1\frac{1}{2}$
17.	-18	18.	$-\frac{81}{50}$ or $-1\frac{31}{50}$	19.	$\frac{18}{5}$ or $3\frac{3}{5}$	20.	$\frac{3}{2}$ or $1\frac{1}{2}$

Extra Work Space