Section 1.2 - Geometric Sequence

- Whereas Arithmetic Sequences involve a Common Difference (Addition/Subtraction)
- A Geometric Sequence has a Common Ratio (Multiplication/Division)

Consider this sequence...

$$
3,6,12,24, \ldots
$$

- $6 \div 3=2$
- $12 \div 6=2$

The Common Ratio is 2

- $24 \div 12=2$

Geometric Sequence

A sequence is Geometric when the common ratio (\boldsymbol{r}) is constant.
The r, where $r \neq 0$ is: $\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\frac{a_{n}}{a_{n-1}}=r$

Example 1: Find the Common Ratio of the following sequences
a) $2,6,18,54, \ldots$
b) $3,-6,12,-24, \ldots$
c) $-8,-4,-2,-1, \ldots$

Solution 1:

a) $\frac{6}{2}=\frac{18}{6}=\frac{54}{18}=3 \quad \rightarrow \quad r=3$
b) $\frac{-6}{3}=\frac{12}{-6}=\frac{-24}{12}=r \quad \rightarrow \quad r=-2$
c) $\frac{-4}{-8}=\frac{-2}{-4}=\frac{-1}{-2}=r \quad \rightarrow \quad r=\frac{1}{2}$

Much like the formula for an Arithmetic Sequence, we can derive the Formula for a Geometric Formula using the Common Ratio Logic.

Let $a=$ the first term and $r=$ the common ratio

$$
\begin{array}{cc}
a_{1} & a_{4}=a_{3} \cdot r=\left(a_{1} \cdot r^{2}\right) \cdot r=a_{1} \cdot r^{3} \\
a_{2}=a_{1} \cdot r & \vdots \\
a_{3}=a_{2} \cdot r=\left(a_{1} \cdot r\right) \cdot r=a_{1} \cdot r^{2} & \\
\boldsymbol{a}_{\boldsymbol{n}}=\boldsymbol{a}_{\mathbf{1}} \cdot \boldsymbol{r}^{\boldsymbol{n - 1}}
\end{array}
$$

www.mrherlaar.weebly.com

The $\boldsymbol{n}^{\text {th }}$ term of a Geometric Sequence
$\boldsymbol{t}_{\boldsymbol{n}}=\boldsymbol{a r} \boldsymbol{r}^{\boldsymbol{n}-\mathbf{1}}$, for any integern ≥ 1

Example 2: Find the $10^{\text {th }}$ term of the following Geometric Sequence $\quad 3,12,48,192, \ldots$
Solution 2: \quad The Common Ratio is: $12 \div 3=\mathbf{4}$, with $\boldsymbol{a}=\mathbf{3}$

$$
\begin{aligned}
t_{n}=a r^{n-1} & \rightarrow \quad t_{10}=(3)(4)^{10-1} \\
t_{10}=(3)(4)^{9} & \rightarrow \quad t_{10}=(3)(262144) \\
\boldsymbol{t}_{\mathbf{1 0}} & =\mathbf{7 8 6 4 3 2}
\end{aligned}
$$

Example 3: The $4^{\text {th }}$ term of a Geometric Sequence is 125 , and the $9^{\text {th }}$ term is $\frac{125}{32}$. Find the $13^{\text {th }}$ term.
Solution 3: \quad The $4^{\text {th }}$ term $\boldsymbol{t}_{4}=a r^{3}=125$. The $9^{\text {th }}$ term $\boldsymbol{t}_{9}=a r^{8}=\frac{125}{32}$
We can write $\boldsymbol{a r} \boldsymbol{r}^{\mathbf{8}}$ as $\left(a r^{\mathbf{3}}\right) \cdot \boldsymbol{r}^{\mathbf{5}} \quad$ (remember your exponent laws)
So... $a r^{8}=\left(\operatorname{lr}^{3}\right) \cdot r^{5}=\frac{125}{32} \rightarrow \underbrace{125 \cdot r^{5}=\frac{125}{32}} \rightarrow \quad \rightarrow \quad r^{5}=\frac{1}{32}$

$$
\text { Fifth-root both sides } \quad r=\sqrt[5]{\frac{1}{32}}=\frac{\sqrt[5]{1}}{\sqrt[5]{32}}=\frac{1}{2}
$$

Now that we have r, we can solve for a

$$
a r^{3}=125 \quad \rightarrow a\left(\frac{1}{2}\right)^{3}=125 \quad \rightarrow \quad a\left(\frac{1}{8}\right)=125 \quad \rightarrow \quad a=1000
$$

And now we can solve for any term we want.

$$
t_{13}=a r^{13-1} \quad \rightarrow \quad t_{13}=1000\left(\frac{1}{2}\right)^{12} \quad \rightarrow \quad \boldsymbol{t}_{13}=\frac{\mathbf{1 2 5}}{\mathbf{5 1 2}}
$$

Example 4: \quad What is the value of x in the sequence: $x, 2 x+2,3 x+3$
Solution 4: \quad We need to write the statements as ratios

$$
\begin{aligned}
\frac{a_{2}}{a_{1}}=r & \text { and } \quad \frac{a_{3}}{a_{2}}=r \\
\frac{2 x+2}{x}=r & \text { and }
\end{aligned} \frac{\frac{3 x+3}{2 x+2}=r}{l}=
$$

Since both sides are equal to \boldsymbol{r} we can set them equal to each other.

$$
\frac{2 x+2}{x}=\frac{3 x+3}{2 x+2}
$$

Multiply both sides of the equation by the LCM.
$x(2 x+2)$
Cross Multiply

$$
(2 x+2)(2 x+2)=(3 x+3)(x)
$$

$$
4 x^{2}+8 x+4=3 x^{2}+3 x
$$

$$
x^{2}+5 x+4=0
$$

$$
(x+4)(x+1)=0
$$

$$
x=-1 \text { and }-4
$$

Section 1.2 - Practice Problems

1. Determine if the sequence is geometric. If so, find r.

a) $4,12,36,72, \ldots$	b) $3,12,48,142, \ldots$	
c) $1,-\frac{1}{2}, \frac{1}{4},-\frac{1}{8}, \ldots$	d) $1,-1,1,-1, \ldots$	
e) $3,-6,-12,24, \ldots$	$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$	
g) $\frac{1}{4}, \frac{1}{6}, \frac{1}{9}, \frac{2}{27}, \ldots$	f)	
i) $3 x^{2}, 12 x^{4} y^{3}, 48 x^{6} y^{6}, \ldots$	$\frac{2}{5},-\frac{2}{3}, \frac{10}{9},-\frac{50}{27}, \ldots$	

2. Write the first five terms of the Geometric Sequence
a) $1,4, \ldots, \ldots$,__
b) $1, \ldots, 4, \ldots$,
c) $\frac{1}{2}, \ldots, \ldots, \frac{1}{16},-$
e) __, $54,18, \ldots$,__
g) $3, \ldots, 3^{2 x+1}, \ldots,-$
h) $1, \ldots, x^{4}, \ldots, \ldots$
3. Find all possible values of r for a Geometric Sequence with the two given terms.
a) $a_{5}=5, a_{7}=25$
a) $a_{5}=5, a_{7}=25$
c) $a_{4}=2 \sqrt{2}, a_{7}=8$
b) $a_{2}=4, a_{6}=\frac{1}{4}$
d) $a_{3}=1, a_{6}=\sqrt{2}$
4. Find the desired information.
a) a_{11}, if $a_{1}=\frac{1}{128}, r=2$
b) a_{9}, if $a_{1}=3, a_{2}=\sqrt{3}$
c) a_{42}, if $a_{40}=9, a_{41}=36$
d) a_{9}, if $a_{4}=5, a_{6}=20$
e) n, if $a_{1}=729, a_{2}=243, l=\frac{1}{9}$
g) a_{1}, if $a_{5}=27, r=3$
f) n, if $a_{1}=2048, a_{2}=1024, l=1$
h) a_{1}, if $a_{7}=128, r=4$
i) r, if $a_{10}=25, a_{12}=225$
k) a_{8}, if $a_{n}=3 a_{n-1}, a_{1}=\frac{1}{27}$
j) r, if $a_{25}=12, a_{31}=96$
l) a_{6}, if $a_{n}=0.1 a_{n-1}, a_{1}=1000$
5. Insert two Geometric Means between a and b.
6. Given the geometric sequence $a, \frac{a}{b}, \frac{a}{b_{2}}, \ldots$ determine an expression for $t_{n}-t_{n-1}, n>2$
7. Find x so that $x-1, x$, and $x+2$ are consecutive (one after the other) terms of a Geometric Sequence.
8. Find the common ratio r for the geometric sequence: $x-2,5-x, 5 x-7, \ldots$
9. What number must be added to $-2,4,19$ so that the resulting numbers are three terms of a Geometric Sequence.
10. If the first two terms of a geometric sequence are $\sqrt{2}$, and $\sqrt[3]{2}$, what is the fourth term?
11. If the product of the first three terms of a Geometric Sequence is -8 , and the sum is $\frac{14}{3}$, what is the common ratio of the sequence?
12. In the sequence $3, x, y, 25$, the first three terms form an arithmetic sequence, and the last three terms form a geometric sequence. Find x and y.
13. The enrolment at Vic High in Victoria was 400 in 1973. If the school's population has increased by 5% a year, how many students will be going to the school in 2010.
14. If a starting salary is $\$ 28000$ and you get an annual increase of 6%, what is your salary at the beginning of the eighth year of work?
15. With each cycle, a vacuum pump removes 25% of the air in a glass container. What percent of the air has been removed after 10 cycles.
16. A car costs a company $\$ 40000$. Each year, the car depreciates 16% of its value. What is the value of the care after five years.
17. Initially a pendulum swings through an arc of 45 cm . On each successive swing, the length of the arc is decreased by 2% of the previous length. What is the length of the arc after 12 swings.
18. A ball is dropped from a height of 10 meters. Each time it strikes the ground it bounces up 75% of its previous height. How many bounces does the ball need before the bounce is less than 20 cm high (Watch your units)?
19. From farmer to consumer a shipment goes through a number of handlers: Farmer \rightarrow

Trucker \rightarrow Regional Market \rightarrow Trucker \rightarrow Wholesaler \rightarrow Trucker \rightarrow Retailer \rightarrow Consumer. If the farmer get 75 cents per kilogram, and if each person in the chain makes a 20% profit, how much does the consumer pay?
20. A truck radiator contains fifty litres of water. Five litres of water is removed and replaced with pure antifreeze, then five litres of mixture is removed and replaced. How much antifreeze is in the radiator after the process is repeated five times.

Pre-Calculus 12

Extra Work Space

