Section 1.1b – Fraction Basics

Fractions

- What are they?
 - They are rational numbers, which means they can be written as a terminating (stops) or repeating decimals
- Everything we do with fractions is dependent on if we know what a fraction is to begin with.

So, what is a Fraction?

- Piece of a whole (Context: The Whole has to be the same size, for numbers the Whole is 1)
- Piece of something
- Something broken into pieces

In addition, this is the representation:

Consider this:

- If you have 5 pieces and they are all **one fifth in size**, you have a whole.
- $\frac{5}{5}$ Think about a Kit Kat bar, 5 pieces all the same size, makes 1 bar!

The **whole** that is **broken in to pieces** is always the same size, namely: 1

If you have 4 pieces of size 4 and 24 pieces of size 24, the whole they create is the same size.

Example:

SAME size WHOLE, DIFFERENT size PIECES

Converting from a Fraction to a Decimal

• The distinguishing thing about fractions is that **every fraction** is either a:

Terminating (ends) or Repeating decimal number.

- Numbers that **neither terminate nor repeat cannot** be expressed as fractions, $Pi(\pi)$ being the most famous example, but there are an **infinite number** of them
- We can figure out the decimal expansion of any fraction, using good old fashion long division

Short Division

Write $\frac{7}{8}$ as a decimal number

$$\begin{array}{c} 0.875\\ \hline 7.0_{6}0_{4}0 \end{array}$$

Therefore:

$$\frac{7}{8} = 0.875$$

Equivalence

Equivalence is a term that means 'the same value'

• Two or more fractions can be **equivalent**, meaning they have the **same value**, but **look different**

Example: $\frac{1}{2}$ is the same as $\frac{2}{4}$ $\frac{3}{6}$ $\frac{4}{8}$ $\frac{15}{30}$

How do we get there?

- We multiply the original fraction by 1.
- The catch is that **anything divided by itself** is one.

So, by multiplying by 1, we use a fraction instead, that will give us the desired denominator.

$$1 = \frac{3}{3} = \frac{5}{5} = \frac{21}{21} = \frac{-4}{-4} = \frac{156}{156}$$

To make equivalent fractions we multiply the original fraction by 1, in the form of a fraction.

Example:

1	?		1	2	2
- =	_	\rightarrow	- •	- =	—
3	6		3	2	6

 $\frac{5}{7} = \frac{15}{?} \longrightarrow \frac{5}{7} \cdot \frac{3}{3} = \frac{15}{21}$

9	?		9.	4	36
$\frac{-}{4} =$	16	\rightarrow	4	$\frac{1}{4} =$	16

Comparing Fractions

 ✓ In order to compare accurately two or more fractions, we need to make sure all the pieces are the same size. That means we need a common denominator.

Example:

$$\frac{2}{3}$$
 and $\frac{3}{4}$
 $\frac{6}{7}$ and $\frac{7}{8}$
 $\frac{2}{3} \cdot \frac{4}{4} = \frac{8}{12}$
 $\frac{3}{4} \cdot \frac{3}{3} = \frac{9}{12}$
 $\frac{6}{7} \cdot \frac{8}{8} = \frac{48}{56}$
 $\frac{7}{8} \cdot \frac{7}{7} = \frac{49}{56}$

 Since
 $\frac{9}{12}$
 bigger than
 $\frac{8}{12}$
 Since
 $\frac{49}{56}$
 bigger than
 $\frac{48}{56}$
 $\frac{3}{4}$
 is bigger than
 $\frac{2}{3}$
 $\frac{7}{8}$
 is bigger than
 $\frac{6}{7}$

Mixed vs Improper Fractions

Improper fractions: Fractions where the numerator is bigger than the denominator (bottom number)

Example: $\frac{13}{5}$ $\frac{11}{3}$ $\frac{4}{3}$

Mixed fractions: Fractions with a whole number and a proper fraction

Example: $3\frac{1}{4}$ $7\frac{2}{3}$ $2\frac{5}{6}$

Converting from Mixed to Improper and Improper to Mixed

- Again, think about your pieces (size and number)
- $\frac{11}{4}$ means that you have **11 pieces** and it takes **4 to make a whole**

Let's break that down then,

$$4 + 4 + 3 = 11$$
 So, we can have: $\frac{4}{4} + \frac{4}{4} + \frac{3}{4}$

• We still have 11 pieces of size 4.

And since
$$\frac{4}{4}$$
 is 1 We can write it as: $1 + 1 + \frac{3}{4}$ or $2\frac{3}{4}$

 $\frac{11}{4}$

• Then Ask: How many pieces are left? 3 Pieces of Size 4

Let's see this visually,

Mixed to Improper

Let's see this visually,

Section 1.1b – Practice Questions

EMERGING LEVEL QUESTIONS

Convert the following fractions into decimals. Use either short or long division.

PROFICIENT LEVEL QUESTIONS

Convert the following two fractions to decimals; use long or short division steps

6. What makes two fractions equivalent? Why does changing to another form not change the value of the original fraction? Give me an example.

EMERGING LEVEL QUESTIONS

Convert the following fractions to equivalent fractions with the given denominator. Show the process.

7. $\frac{3}{4} = \frac{1}{16}$	8. $-\frac{2}{3} = -\frac{1}{9}$	9. $\frac{12}{15} = \frac{12}{45}$
10. $\frac{4}{5} = \frac{100}{100}$	11. $\frac{1}{7} = \frac{1}{14}$	12. $\frac{6}{7} = \frac{1}{21}$
13. $\frac{12}{13} = \frac{1}{169}$	14. $\frac{9}{11} = \frac{1}{99}$	15. $-\frac{2}{9} = -\frac{36}{36}$
16. $\frac{14}{3} = \frac{1}{6}$	17. $\frac{18}{7} = \frac{18}{28}$	18. $\frac{5}{8} = \frac{1}{32}$

19. When attempting to compare two fractions, what makes it very easy, why?

PROFICIENT LEVEL QUESTIONS

Compare the following fractions using: <,>,= Justify your reasoning using a common denominator.

20. $\frac{2}{3}$ $\frac{3}{4}$	21. $\frac{1}{2}$ $\frac{25}{50}$	22. $\frac{6}{7}$ $\frac{7}{8}$
23. $\frac{4}{5}$ $\frac{8}{10}$	24. $-\frac{2}{3}$ $\frac{2}{3}$	25. $\frac{12}{13}$ $\frac{11}{12}$
26. $\frac{3}{7}$ $\frac{5}{8}$	27. $\frac{6}{6}$ $\frac{13}{13}$	28. $\frac{8}{9}$ $\frac{6}{7}$

Use visuals to convert the following fractions from MIXED to IMPROPER or VICE VERSE

Convert the following from Improper to Mixed or Vice Versa, no diagrams needed

Answer Key – Section 1.1b

1.	0. 6	2.	0.375	3.	0.583	4.	0.625
5.	0.571428	6. An.	swers Vary	7.	12	8.	6
9.	36	10.	80	11.	2	12.	18
13.	156	14.	81	15.	8	16.	28
17.	72	18.	20	19.	Common Denominator	20.	<
21.	=	22.	<	23.	=	24.	<
25.	>	26.	<	27.	=	28.	>
29.	<u>23</u> 7	30.	17 4	31.	<u>45</u> 7	32.	$5\frac{2}{3}$
33.	$4\frac{3}{5}$	34.	$2\frac{4}{7}$	35.	58 11	36.	$\frac{17}{6}$
37.	<u>43</u> 10	38.	$-3\frac{5}{6}$	39.	$4\frac{3}{4}$	40.	$-3\frac{3}{10}$

Extra Work Space