Section 1.1b - Fraction Basics

This booklet belongs to: \qquad Block: \qquad

Fractions

- What are they?
- They are rational numbers, which means they can be written as a terminating (stops) or repeating decimals
- Everything we do with fractions is dependent on if we know what a fraction is to begin with.

So, what is a Fraction?

- Piece of a whole
(Context: The Whole has to be the same size, for numbers the Whole is 1)
- Piece of something
- Something broken into pieces

In addition, this is the representation:

Consider this:

- If you have 5 pieces and they are all one fifth in size, you have a whole.
- $\frac{5}{5} \quad$ Think about a Kit Kat bar, 5 pieces all the same size, makes 1 bar!

The whole that is broken in to pieces is always the same size, namely: 1

If you have 4 pieces of size 4 and 24 pieces of size 24 , the whole they create is the same size.

Example:

Converting from a Fraction to a Decimal

- The distinguishing thing about fractions is that every fraction is either a:

Terminating (ends) or Repeating decimal number.

- Numbers that neither terminate nor repeat cannot be expressed as fractions, Pi (π) being the most famous example, but there are an infinite number of them
- We can figure out the decimal expansion of any fraction, using good old fashion long division

Example: Write $\frac{5}{7}$ as a decimal number
This reads 5 divided by 7

Short Division

Write $\quad \frac{7}{8}$ as a decimal number

$$
8 \longdiv { 0 . 8 7 5 }
$$

Therefore:

$$
\frac{7}{8}=0.875
$$

Equivalence

Equivalence is a term that means 'the same value'

- Two or more fractions can be equivalent, meaning they have the same value, but look different

Example: $\quad \frac{1}{2}$ is the same as $\quad \frac{2}{4} \quad \frac{3}{6} \quad \frac{4}{8} \quad \frac{15}{30}$

How do we get there?

- We multiply the original fraction by 1.
- The catch is that anything divided by itself is one.

So, by multiplying by 1 , we use a fraction instead, that will give us the desired denominator.

$$
1=\frac{3}{3}=\frac{5}{5}=\frac{21}{21}=\frac{-4}{-4}=\frac{156}{156}
$$

To make equivalent fractions we multiply the original fraction by 1 , in the form of a fraction.

Example:

$$
\begin{array}{lll}
\frac{1}{3}=\frac{?}{6} & \rightarrow & \frac{1}{3} \cdot \frac{2}{2}=\frac{2}{6} \\
\frac{5}{7}=\frac{15}{?} & \rightarrow & \frac{5}{7} \cdot \frac{3}{3}=\frac{15}{21} \\
\frac{9}{4}=\frac{?}{16} & \rightarrow & \frac{9}{4} \cdot \frac{4}{4}=\frac{36}{16}
\end{array}
$$

Comparing Fractions

\checkmark In order to compare accurately two or more fractions, we need to make sure all the pieces are the same size. That means we need a common denominator.

Example:

$$
\begin{gathered}
\frac{2}{3} \text { and } \frac{3}{4} \\
\frac{2}{3} \cdot \frac{4}{4}=\frac{8}{12}, \quad \frac{3}{4} \cdot \frac{3}{3}=\frac{9}{12} \quad \frac{6}{7} \cdot \frac{8}{8}=\frac{48}{56}, \quad \frac{7}{8} \cdot \frac{7}{7}=\frac{49}{56} \\
\text { Since } \frac{9}{12} \text { bigger than } \frac{8}{12} \\
\frac{3}{4} \text { is bigger than } \frac{2}{3}
\end{gathered}
$$

Mixed vs Improper Fractions

Improper fractions:
Fractions where the numerator is bigger than the denominator (bottom number)

Example:

$$
\frac{13}{5} \quad \frac{11}{3} \quad \frac{4}{3}
$$

Mixed fractions: \quad Fractions with a whole number and a proper fraction

Example: $\quad 3 \frac{1}{4} \quad 7 \frac{2}{3} \quad 2 \frac{5}{6}$

Converting from Mixed to Improper and Improper to Mixed

- Again, think about your pieces (size and number)
$\frac{11}{4}$ means that you have 11 pieces and it takes 4 to make a whole
Let's break that down then,
$4+4+3=11$ So, we can have: $\quad \frac{4}{4}+\frac{4}{4}+\frac{3}{4}$
- We still have 11 pieces of size 4 .

And since $\frac{4}{4}$ is $1 \quad$ We can write it as: $\quad 1+1+\frac{3}{4} \quad$ or $2 \frac{3}{4}$

- Ask: How many times does 4 go into 11 completely?
- Then Ask: How many pieces are left?

3 Pieces of Size 4

Let's see this visually,

Mixed to Improper

$3 \frac{2}{5}$ means we have $1+1+1+\frac{2}{5} \quad$ but we can write 1 as $\frac{5}{5}$

We can say we have,

$$
\frac{5}{5}+\frac{5}{5}+\frac{5}{5}+\frac{2}{5}=\frac{17}{5}
$$

$3 \frac{2}{5}=\frac{17}{5}$
 $\frac{(\text { Denominator } \cdot \text { Whole Number })+\text { Numerator }}{\text { Denominator }}$
 Note: If the fraction is negative you do not include it in the conversion process.
 It just means that the improper fraction is negative too.

- You have 3 Whole of pieces of size $5: \quad 3 \cdot 5=15$
- And 2 other pieces of size 5:
$15+2=17$

Let's see this visually,

We have wholes, split into 5 pieces. Because the denominator is 5 .

Then we shade 3 whole bars. Because the
Whole Number is 3 .

And we shade 2 out of 5 .
Because the Numerator is 2.
How many individual cells
are shaded?

Section 1.1b - Practice Questions

EMERGING LEVEL QUESTIONS

Convert the following fractions into decimals. Use either short or long division.
1.

3.

2.
$\frac{3}{8}$

PROFICIENT LEVEL QUESTIONS

Convert the following two fractions to decimals; use long or short division steps
4. $\frac{5}{8}$
5. $\frac{4}{7}$

6. What makes two fractions equivalent? Why does changing to another form not change the value of the original fraction? Give me an example.

EMERGING LEVEL QUESTIONS

Convert the following fractions to equivalent fractions with the given denominator. Show the process.

7. $\frac{3}{4}=\frac{}{16}$	8. $-\frac{2}{3}=-\frac{}{9}$	9. $\frac{12}{15}=\frac{}{45}$
10. $\frac{4}{5}=\frac{}{100}$	11. $\frac{1}{7}=\frac{}{14}$	12. $\frac{6}{7}=\frac{}{21}$
13. $\frac{12}{13}=\frac{}{169}$	14. $\frac{9}{11}=\frac{-}{99}$	15. $-\frac{2}{9}=-\frac{}{36}$
16. $\frac{14}{3}=\frac{-}{6}$	17. $\frac{18}{7}=\frac{}{28}$	18. $\frac{5}{8}=\frac{}{32}$

19. When attempting to compare two fractions, what makes it very easy, why?

PROFICIENT LEVEL QUESTIONS

Compare the following fractions using: $\quad<,>,=$ Justify your reasoning using a common denominator.

20. $\frac{2}{3} \quad \frac{3}{4}$	21. $\frac{1}{2} \frac{25}{50}$	22. $\frac{6}{7}$	$\frac{7}{8}$
$\text { 23. } \frac{4}{5} \quad \frac{8}{10}$	24. $-\frac{2}{3} \quad \frac{2}{3}$	25. $\frac{12}{13}$	$\frac{11}{12}$
26. $\frac{3}{7} \quad \frac{5}{8}$	27. $\frac{6}{6} \quad \frac{13}{13}$	28. $\frac{8}{9}$	$\frac{6}{7}$

Use visuals to convert the following fractions from MIXED to IMPROPER or VICE VERSE
30. $4 \frac{1}{4} \rightarrow$

31. $6 \frac{3}{7} \rightarrow$

32. $\frac{17}{3} \rightarrow$

34. $\frac{18}{7} \rightarrow$

Convert the following from Improper to Mixed or Vice Versa, no diagrams needed

35. $5 \frac{3}{11} \rightarrow$	$37.2 \frac{3}{10} \rightarrow$	
$38 .-\frac{23}{6} \rightarrow$	$39 . \frac{19}{4} \rightarrow$	$40 .-\frac{33}{10} \rightarrow$

Answer Key - Section 1.1b

1.	$0 . \overline{6}$	2.	0.375	3.	$0.58 \overline{3}$	4.	0.625
5.	0.571428	6.	Answers Vary	7.	12	8.	6
9.	36	10.	80	11	2	12	18
13.	156	14.	81	15	8	16	28
17.	72	18.	20	19	Common Denominator	20	<
21.	$=$	22.	<	23	$=$	24	<
25.	>	26.	<	27	$=$	28	>
	$\frac{23}{7}$		$\frac{17}{4}$		$\frac{45}{7}$		$5 \frac{2}{3}$
33.	$4 \frac{3}{5}$	34	$2 \frac{4}{7}$		$\frac{58}{11}$		$\frac{17}{6}$
	$\frac{43}{10}$	38	$-3 \frac{5}{6}$		$4 \frac{3}{4}$		$-3 \frac{3}{10}$

Extra Work Space

