## Section 1.1 - Arithmetic Sequence and Series

- Depending on your experience, you may have seen this is Grade 10, but here is a quick review


## A Sequence

- A sequence is a list of numbers
- A finite sequence stops $\quad 1,3,5,7,9$
- An infinite sequence does not $1,3,5,7,9, \ldots$

Each sequence is made of terms, and they have a Domain of positive integers.
The generic form of a sequence is in numbered terms...

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}
$$

Example 1: Write the first four terms of the sequence
a) $\quad a_{n}=\frac{n+1}{n}$
b) $b_{n}=2 n-3$

## Solution 1:

a) $a_{1}=\frac{1+1}{1}=2, \quad a_{2}=\frac{2+1}{2}=\frac{3}{2}, \quad a_{3}=\frac{3+1}{3}=\frac{4}{3}, \quad a_{4}=\frac{4+1}{4}=\frac{5}{4}$
b) $b_{1}=2(1)-3=-1, \quad b_{2}=2(2)-3=1, \quad b_{3}=2(3)-3=3, \quad b_{4}=2(4)-3=5$

- We can also define a sequence by identifying the first term, or first few terms, and then denoting the $n^{t h}$ term in terms of the preceding term, using the notation: $a_{n-1}$

This is called a RECURSIVE SEQUENCE
Example 2: $\quad$ Write the first four terms of the recursive formula: $\quad a_{1}=3, \quad a_{n}=\frac{a_{n-1}}{n}$

## Solution 2:

$a_{1}=3, \quad a_{2}=\frac{a_{2-1}}{2}=\frac{a_{1}}{2}=\frac{3}{2}, \quad a_{3}=\frac{a_{3-1}}{2}=\frac{a_{2}}{3}=\frac{\frac{3}{2}}{3}=\frac{1}{2}, \quad a_{4}=\frac{a_{4-1}}{4}=\frac{a_{3}}{4}=\frac{\frac{1}{2}}{4}=\frac{1}{8}$

## Sigma Notation

There is a lovely, but strange looking notation that can collapse the written form of a summed sequence. It is denoted by the Greek Letter Sigma $(\Sigma)$.

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k} \quad \begin{array}{c:c}
\text { Sigma Notation has } \\
n-k+1 \text { Terms }
\end{array}
$$

- $\quad \boldsymbol{k}$ is the index of the sum, and shows where the sum starts
- $\boldsymbol{n}$ shows where the summation ends

Example 3: Find the sum of the following sequences

$$
\sum_{k=1}^{4}(2 k+1) \quad \text { and } \quad \sum_{k=1}^{5}\left(k^{2}+1\right)
$$

## Solution 3:

For the first one, we start at $\boldsymbol{k}=1$ and finish at $\boldsymbol{k}=\mathbf{4}$

$$
\begin{gathered}
2(1)+1=3, \quad 2(2)+1=5, \quad 2(3)+1=7, \quad 2(4)+1=9 \\
3+5+7+9=24
\end{gathered}
$$

For the second one, we start at $\boldsymbol{k}=1$ and finish at $\boldsymbol{k}=\mathbf{5}$

$$
1^{2}+1=2, \quad 2^{2}+1=5, \quad 3^{2}+1=10, \quad 4^{2}+1=17, \quad 5^{2}+1=26
$$

$$
2+5+10+17+26=60
$$

## Arithmetic Sequence

- An arithmetic sequence is a sequence in which the successive terms have a common difference
- For example the sequence, $3,7,11,15, \ldots$ has a common difference of 4
- The common difference, $\boldsymbol{d}$, of this sequence is 4 .

If we look at the pattern we may see something helpful...

We are able to express every term with respect to the first term and the common difference!
$1^{\text {st }}$ term: $\quad a_{1}=a_{1}$
$2^{\text {nd }}$ term: $\quad a_{2}=a_{1}+\boldsymbol{d}$
$3^{\text {rd }}$ term: $\quad \boldsymbol{a}_{\mathbf{3}}=\boldsymbol{a}_{\mathbf{2}}+d=\left(\boldsymbol{a}_{\mathbf{1}}+\boldsymbol{d}\right)+d=\boldsymbol{a}_{\mathbf{1}}+\mathbf{2 d}$
$4^{\text {th }}$ term: $\quad \boldsymbol{a}_{\mathbf{4}}=\boldsymbol{a}_{\mathbf{3}}+d=\left(\boldsymbol{a}_{\mathbf{1}}+\mathbf{2 d}\right)+d=\boldsymbol{a}_{\mathbf{1}}+\mathbf{3 d}$

- From this pattern we are able to generate the general equation of an Arithmetic Sequence


## The $\boldsymbol{n}^{\text {th }}$ term of an Arithmetic Sequence

- For an arithmetic sequence $\left\{\boldsymbol{t}_{\boldsymbol{n}}\right\}$ whose first term is $\boldsymbol{a}$, with a common difference $\boldsymbol{d}$ :

$$
\boldsymbol{t}_{\boldsymbol{n}}=\boldsymbol{a}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{d} \quad \text { for any integer } n \geq 1
$$

Example 4: For each arithmetic sequence, identity the common difference.
a) $3,5,7,9, \ldots$
b) $11,8,5,2, \ldots$

## Solution 4:

a) $5-3=2$,
$7-5=2$,
$9-7=2$,
Therefore $d=2$
b) $8-11=-3$,
$5-8=-3$,
$2-5=-3$,
Therefore $d=-3$

Example 5: Determine if the sequence $\left\{t_{n}\right\}=\{3-2 n\}$ is arithmetic
Solution 5: $\quad t_{1}=3-2(1)=1$

$$
\begin{aligned}
& t_{2}=3-2(2)=-1 \\
& t_{3}=3-2(3)=-3
\end{aligned}
$$

$1,-1,-3, \ldots$ has a common difference of -2
So the sequence is arithmetic!

Example 6: Find the $12^{\text {th }}$ term of the arithmetic sequence $2,5,8, \ldots$
Solution 6:

$$
\begin{aligned}
& a=2 \quad d=3 \\
& t_{n}=a+(n-1) d \\
& t_{12}=2+(12-1) 3 \quad \rightarrow \quad 35
\end{aligned}
$$

Example 7: Which term in the arithmetic sequence $4,7,10, \ldots$ has a value of 439 ?
Solution 7:

$$
\begin{aligned}
& d=7-4=3 \\
& t_{n}=a+(n-1) d \\
& 439=4+(n-1) 3 \\
& 435=(n-1) 3 \quad \rightarrow \quad 145=n-1 \\
& \quad n=146 \quad \text { The } 146^{\text {th }} \text { term is } 439 .
\end{aligned}
$$

Example 8: The $7^{\text {th }}$ term of an arithmetic sequence is 78 , and the $18^{\text {th }}$ term is 45 . Find the $1^{\text {st }}$ term.
Solution 8: $\quad$ There are $18-7=\mathbf{1 1}$ terms between 45 and 78 . And the difference between them is $45-78=-33$

So,

$$
11 d=-33 \rightarrow d=-3
$$

So, $\quad t_{n}=a+(n-1) d$

|  | This gets us the common |
| :--- | :--- |
| difference by using the gap |  |
| in all the terms we missed. |  |



Example 9: $\quad$ Find $x$ so that $3 x+2,2 x-3$, and $2-4 x$ are consecutive terms of an arithmetic sequence

Solution 9: Since they are consecutive,

$$
(2 x-3)-(3 x+2)=d \quad \text { and } \quad(2-4 x)-(2 x-3)=d
$$

So since they both equal $d$, we can set them equal to each other.

$$
\begin{gathered}
(2 x-3)-(3 x+2)=(2-4 x)-(2 x-3) \\
2 x-3-3 x-2=2-4 x-2 x+3 \\
-x-5=-6 x+5 \quad \rightarrow \quad 5 x=10 \quad \rightarrow \quad x=\mathbf{2}
\end{gathered}
$$

## Arithmetic Series

- An arithmetic series is when we take our given sequence and we add it all together (sum)
- We have finite and infinite sums just like we have for sequences, but we're only going to look at finite series
- Here's the formula:


## Sum of an Arithmetic Series

- The sum of the first $n$ terms of an arithmetic series is given by:

$$
S_{n}=\frac{n}{2}(a+l) \quad \text { or } \quad S_{n}=\frac{n}{2}(2 a+(n-1) d)
$$

Where $a=$ the first term, $\quad l=$ the last term, $\quad$ and $\quad d=$ the common difference

- We can interchange the two equations, depending on what information is given to us
- Then it really just becomes plug by numbers

Example 10: Find the sum of the positive integers from 1 to 50 inclusive.

## Solution 10:

$$
\begin{array}{cc}
a=1, \quad l=50, \quad d=1 & \begin{array}{l}
\text { Since we have } a \text { and } \boldsymbol{l} \text { we know } \\
S_{n}=\frac{n}{2}(a+l)
\end{array} \\
S_{50}=\frac{50}{2}(1+50) & \rightarrow \quad 25(51) \rightarrow 1275
\end{array}
$$

Example 11: Find the sum of the first 25 terms of the series $11+15+19+\cdots$
Solution 11: The series is arithmetic (has a common difference) with $a=11, d=4$, and $n=25$

$$
\begin{array}{cl:l}
S_{n}=\frac{n}{2}(2 a+(n-1) d) \\
S_{25}=\frac{25}{2}(2(11)+(25-1) 4) & \rightarrow \quad 12.5(22+96) \rightarrow 1475
\end{array}
$$

Example 12: $\quad$ Find the sum of the series $7+10+13+\cdots+100$.
Solution 12: $\quad a=7, l=100, d=3 \quad$ but $\quad$ We don't know $n$, so we solve for that first

To find $\boldsymbol{n}$ we use the formula from Section 2.2

$$
t_{n}=a+(n-1) d
$$

Since we want to know how many terms there are and $\mathbf{1 0 0}$ is the last term, if we solve for that we'll get $n$.

$$
\begin{gathered}
100=7+(n-1)(3) \\
\rightarrow 100=7+3 n-3 \\
\rightarrow 100=4+3 n \\
\rightarrow 96=3 n \\
n=32
\end{gathered}
$$

Now we can solve for the sum since we know $n$

$$
\begin{gathered}
S_{n}=\frac{n}{2}(a+l) \\
S_{32}=\frac{32}{2}(7+100) \\
S_{32}=16(107) \\
S_{32}=1712
\end{gathered}
$$

Example 13: Find the sum of the $5+9+13+\cdots+137$
Solution 13: $\quad a=5, l=137, d=4 \quad$ but $\quad$ We don't know $n$, so we solve for that first

To find $\boldsymbol{n}$ we use the formula from Section 2.2

$$
t_{n}=a+(n-1) d
$$

Since we want to know how many terms there are and 137 is the last term, if we solve for that we'll get $n$.

$$
\begin{gathered}
137=5+(n-1)(4) \\
\rightarrow 137=5+4 n-4 \\
\rightarrow 137=1+4 n \\
\rightarrow 136=4 n \\
n=34
\end{gathered}
$$

Now we can solve for the sum since we know $n$

$$
\begin{gathered}
S_{n}=\frac{n}{2}(a+l) \\
S_{34}=\frac{34}{2}(5+137) \\
S_{34}=17(142) \\
S_{34}=2414
\end{gathered}
$$

## Section 1.1 Part 1 - Practice Problems

a) Respond to the following
a) The Domain of a sequence is the set of what find of consecutive numbers?
b) A sequence with a last term is what kind of sequence?
c) A sequence with no last term is what kind of sequence
d) What kind of sequence is this: $\quad a_{1}=2, a_{n}=2 a_{n-1}$
e) Write the formula for the $n^{\text {th }}$ term of an arithmetic sequence $t_{n}$
2. Write the first four terms of each of the following sequences
a) $\left\{n^{2}-2\right\}$
b) $\left\{\frac{n+2}{n+1}\right\}$
c) $\left\{(-1)^{n+1} n^{2}\right\}$
d) $\left\{\frac{3^{n}}{2^{n}+1}\right\}$
e) $\left\{\frac{2^{n}}{n^{2}}\right\}$
f) $\left\{\left(\frac{2}{3}\right)^{n}\right\}$
3. Write the $n^{\text {th }}$ term of the suggested pattern.
a) $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$
b) $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$
c) $\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \ldots$
d) $2,-4,6,-8$
4. Write the first four terms of the recursive sequence.
a) $a=4, t_{n}=2+t_{n-1}$
b) $a=3, t_{n}=n-t_{n-1}$
c) $a=2, a_{2}=3, a_{n}=a_{n-1}+a_{n-2}$
d) $a=-1, a_{2}=1, a_{n}=n a_{n-1}+a_{n-2}$
5. Find the sum of each sequence.
a) $\sum_{k=1}^{5} 4$
6. Express each sum using summation notation with index $k=1$
a) $1+3+5+7$
b) $1^{2}+2^{2}+3^{2}+4^{2}+5^{2}$
c) $\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\cdots+\frac{n}{n+1}$
d) $5+\frac{5^{2}}{2}+\frac{5^{3}}{3}+\cdots+\frac{5^{n}}{n}$
7. Write the first five terms of the arithmetic sequence.

8. Find the indicated arithmetic term.

| a) $a=5, d=3$; find $t_{12}$ | b) $a=\frac{2}{3}, d=-\frac{1}{4}$; find $t_{9}$ |
| :--- | :---: |
| c) $a=-\frac{3}{4}, d=\frac{1}{2}$; find $t_{10}$ |  |

9. Find the number of terms in each arithmetic sequence
a) $a=6, d=-3, t_{n}=-30 \quad$ b) $a=-3, d=5, t_{n}=82$
10. Find the first term in the arithmetic sequence
a) 6 th term is $10 ; 18$ th term is 46
b) 4 th term is $2 ; 18$ th term is 30
c) 9 th term is $23 ; 17$ th term is -1
d) 5 th term is $3 ; 25$ th term is -57
e) 13 th term is $-3 ; 20$ th term is -17
11. Find $x$ so that the values given are consecutive terms of an arithmetic sequence
a) $x+3,2 x+1$, and $5 x+2$
b) $2 x, 3 x+2$, and $5 x+3$

15
c) $x-1, \frac{1}{2} x+4$, and $1-2 x$
e) $x+4, x^{2}+5$, and $x+30$
d) $2 x-1, x+1$, and $3 x+9$
f) $8 x+7,2 x+5$, and $2 x^{2}+x$
12. If $t_{n}$ is a term of an arithmetic sequence, what is $t_{n}-t_{n-1}$ equal to?
13. List the first seven numbers of the Fibonacci Sequence: $a_{1}=1, a_{2}=1, a_{n}=a_{n-1}+a_{n-2}, n>2$
14. The starting salary of an employee is $\$ 23750$. If each year a $\$ 1250$ raise is given, in how many years will the employee's salary be $\$ 50000$ ?
15. An auditorium has 8 seats in the first row. Each subsequent row has 4 more seats than the previous row. What row has 140 seats?
16. A well drilling company charges $\$ 8.00$ for the first meter, then $\$ 8.75$ for the second meter and so on in an arithmetic sequence. At this rate, what would be the cost to drill the meter of a well 120 meters deep?
17. Assume that leading up to your death you needed 15 minutes more sleep each night. When you hit an additional 24 hours sleep you die. If you needed 8 hours sleep on September $1^{\text {st }}$, what day do you die?
18. The first three terms of an arithmetic sequence are: $x-3, \frac{x^{2}}{25}+9$, and $3 x-11$. Determine the fourth term.
19. The first, third, and fifth terms of an arithmetic sequence are: $2 x-1, x^{2}-3$, and $11-x^{2}$ respectively. Determine the second term.

## Section 1.1 Part 2 - Practice Problems

1. Find the sum of the arithmetic series
a) $3+5+7+\cdots+(2 n+1)$ b) $-1+2+5+\cdots+(3 n-4)$
g) $39+33+27+\cdots+(-15)$
h) $23+19+15+\cdots+(-305)$
i) $\frac{1}{2}+\frac{7}{8}+\frac{5}{4}+\cdots+\frac{55}{8}$
j) $\frac{16}{3}+\frac{13}{3}+\frac{10}{3}+\cdots+\left(-\frac{65}{3}\right)$
2. Find the indicated value using the information given
a) $S_{20}$, if $a_{1}=8, a_{20}=65$
b) $S_{21}$, if $a_{1}=8, a_{20}=65$
c) $S_{56}$, if $a_{56}=13, d=-9$
d) $n$ if $S_{n}=180, a_{1}=4, t_{n}=16$
e) $d$, if $S_{40}=680, a_{1}=11$
f) $S_{62}$, if $a_{1}=10, d=3$
g) $S_{19}$, if $d=4, a_{19}=17$
h) $S_{40}$, if $d=-3, a_{40}=65$
i) $S_{40}$, if $a_{5}=42, a_{15}=-18$
j) $S_{20}$, if $a_{8}=17, a_{15}=38$
3. Find the indicated sum.

e)

$$
\sum_{y=11}^{48}\left(\frac{y+4}{2}\right)
$$

$$
\text { f) } \sum_{z=51}^{100}(200-z)-\sum_{z=1}^{50}(200-z)
$$

4. Insert $k$ arithmetic means between the given pair of numbers.
a) $5,10, k=2$
b) $3,6, k=3$
c) $a, b, k=2$
5. Solve for $b: \quad \sum_{x=2}^{b}(23-2 x)=91$
d) $a, b, k=3$
6. Find the sum: $\sum_{x=a}^{b} 5$
7. What is the last element in the $20^{\text {th }}$ row?

1

|  |  | 2 |  | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 7 | 4 | 8 | 5 | 9 |

6
9
10
8. How many terms of the arithmetic series $1491+1484+1477+\cdots$ are needed to give the sum of zero?
9. An auditorium has eight seats in the first row. Each subsequent row has four more seats than the previous row. How many seats are there in the $50^{\text {th }}$ row of the auditorium?
10. If $\$ 1000$ is deposited into the bank the day a child is born, and $\$ 100$ more than the previous deposit is made each year until the child's 18th birthday, how much will be in the account, excluding interest?
11. Find the sum of all multiples of 6 between 50 and 500.
12. The sum of three consecutive terms of an arithmetic sequence is 3 . The sum of their squares is 75 . Find the three numbers.
13. If 20 people in a class shake hands with each other exactly once, how many handshakes will take place?
14. If the sum of the terms of an arithmetic series is 234 , and the middle term is 26 , find the number of terms in the series.

## Extra Work Space

