Review 1: Operations with Integers and Fractions

This booklet belongs to:

\qquad Block: \qquad

Section	Due Date	How Did It Go?	Corrections Made and Understood
$R 1.1$			
$R 1.2$			
$R 1.3$			
$R 1.4$			
$R 1.5$			
$R 1.6$			
$R 1.7$			

Assessment Rubric

Category	L-T Score	Learning Target Procedure	Algebraic/Arithmetic Procedure	Communication	Anecdotal Example
Extending	4	Procedural context demonstrates a detailed understanding of the learning targets	Algebraic/Arithmetic process is error free, logic is clear and easy to follow	Written output is clear, easy to follow, and shows depth of understanding	"You could teach this" or "It's an answer key"
	3.5	Procedural context demonstrates a thorough understanding of the learning targets	Algebraic/Arithmetic process contains very minor errors, logic is clear and easy to follow	Written output is clear, easy to follow, and shows depth of understanding	"Almost perfect, one or two little errors"
Proficient	3	Procedural context is clear, demonstrates sound reasoning and thought of the learning targets	Algebraic/Arithmetic process contains minor errors, logic is clear and easy to follow	Written output is clear and organized, and shows depth of understanding	"Good understanding
with a few errors"					

Learning Targets

L - T	Description	Mark	
$\boldsymbol{R 1 - \mathbf { 1 }}$	\bullet Understanding the place holder system and rounding numbers		
\bullet Executing operations with integers (Add/Subtract/Multiply/Divide)			

Comments:

Competency Evaluation

A valuable aspect to the learning process involves self-reflection and efficacy. Research has shown that authentic self-reflection helps improve performance and effort, and can have a direct impact on the growth mindset of the individual. In order to grow and be a life-long learner we need to develop the capacity to monitor, evaluate, and know what and where we need to focus on improvement. Read the following list of Core Competency Outcomes and reflect on your behaviour, attitude, effort, and actions throughout this unit.

- Rank yourself on the left of each column: 4 (Excellent), 3 (Good), 2 (Satisfactory), 1 (Needs Improvement)

Review 1.1 - Place Value and Rounding

Place Holders and What They Mean

- Every number has 'place holders' that have significant value of where each number is placed
- It is all based on a BASE 10 system
- We say BASE 10 because when we get to 10 in each position we move to the next one

Example:

1 - Is the THOUSANDS
2 - Is the HUNDREDS
3 - Is the TENS
4 - Is the ONES or UNITS

1234.567

5 - Is the TENTHS
6 - Is the HUNDREDTHS
7 - Is the THOUSANDTHS

- We use these PLACE HOLDERS when we determine when and where to ROUND numbers
- We use the language when we are naming numbers

Understanding Numbers

$>$ We need to look at numbers as what they are, don't use slang.
>2017 It's not 20 17; it is two thousand and seventeen.
We often take for granted our number sense. If you can't read it properly or know what the position system is, how could you possibly understand it? It would be like trying to spell without knowing what the letters mean.

Example: Convert to numbers or words
i) Forty Two
ii) Seven Hundred, twenty three and five tenths
iii) $\quad 123.56$
iv) $\quad 53.1234$

Solution:

i) 42
ii) 723.5
iii) One Hundred, twenty-three, and fifty-six hundredths
iv) Fifty-three and one thousand, two hundred, and thirty four ten-thousandths

Rounding Decimals

- When you do a calculation and the answer has more decimal places than are needed for an appropriate answer, you must round your answer.
- The "rule" for rounding is: 5 or higher rounds up, anything else rounds down.

The steps for rounding are:

Example 1:

1. Determine how many decimal places you need and draw a line under the digit (number) in that place.
2. Draw a vertical line to the right of the underlined digit.
3. Circle the digit to the RIGHT of your vertical line
a. If the rounding digit is a $0,1,2,3$, or 4 then you are "rounding down" and the target digit stays the same.
b. If the rounding digit is a $5,6,7,8$, or 9 then your are "rounding up" and the target digit will increase by 1. This can cause a ripple effect (examples to follow).
4. Drop all the digits to the right of your vertical line.

Example 2: Round 765.3482 to 1 decimal place (tenths place).

Example 3: Round 743.6953 to 2 decimal places (hundredths).

Round to 2 decimal places (hundredths):
795.3482

What you are really
doing is asking if the original number is closer to 795.34 or 795.35

Rounding Whole Numbers

- The process for rounding whole numbers is similar until the last step.

Example 1:

1. Determine which place you need and draw a line under the digit (number) in that place.
2. Draw a vertical line to the right of the underlined digit.
3. Circle the digit to the RIGHT of your vertical line.
a. If the rounding digit is a $0,1,2,3$, or 4 then you are "rounding down" and the target digit stays the same.
b. If the rounding digit is a $5,6,7,8$, or 9 then your are "rounding up" and the target digit will increase by 1. This can cause a ripple effect (examples to follow).
4. All the digits to the right of your vertical line become zeros.

Round 427 to the nearest ten.
427

What you are really doing is asking if the original number is closer to 430 or 420

Example 2: Round 23165 to the nearest thousand.

Example 3: Round 43853 to the nearest hundred.

Review 1.1 - Practice Questions

Number to Words

1) Convert the following numbers to their word equivalents
a) 23
b) 148.57
c) -14.5
\qquad
\qquad
d) 0.0087
e) 12345.6789
2) Convert the following words to their number equivalents
a) Ninety seven and one tenth
b) Negative Five and thirty four hundredths
c) One thousand Two Hundred and fifteen and four thousandths
d) One million, Four hundred Thousand and twelve
e) Eighty six and seven ten-thousandths

Rounding Decimal Numbers

3) Round to the nearest tenth (one decimal place):
a) 8.946
c) 5.149
b) 2.673 \qquad d) 9.7723
\qquad
\qquad
\qquad
\qquad
4) Round to the nearest hundredth (two decimal places):
a) 8.946 \qquad c) 5.149
b) 2.673 \qquad d) 9.7723
5) Round to the nearest thousandth (three decimal places):
a) 8.9467
c) 5.1491
b) 2.6734
d) 9.7723
\qquad
\qquad
\qquad
6) Round as indicated. The target digit is underlined.
a) 94.67
c) $275.38 \underline{2} 2$
d) $275.3 \underline{8} 22$
b) $86.7 \underline{3} 4$ \qquad
\qquad
\qquad

Rounding Whole Numbers

7) Round to the nearest whole number:
a) 89.4
c) 514.7
b) 2673.8 \qquad d) 97.3
\qquad
8) Round to the nearest ten:
a) 89
c) 514
b) 2673
\qquad
d) 97
9) Round to the nearest hundred:
a) 89 \qquad c) 514
b) 2673 \qquad d) 97

d)
\qquad
\qquad
10) Round to the nearest thousand:
a) 1189 \qquad c) 5914
b) 2673 \qquad d) 9397

Review Section 1.2 - Integers

Adding and Subtracting Integers

- They represents all the countable numbers, both positive and negative

$$
(\ldots-3,-2,-1,0,1,2,3, \ldots)
$$

- A great place to start is to understand that subtraction can be shown as adding negatives

Example: $\quad 7-4=7+(-4)$
This may seem weird now, but it will come in handy later
If this helps, think of positive and negatives as:

Positive - good things
 Negative - bad things

- This way when we are adding and subtracting just think of adding good and bad things or taking good or bad things away
- All you need to consider then is which did you have more of in the beginning

Example:

$6-2=4$

$$
5+(-3)=2
$$

$$
-4-8=-12
$$

$$
12-14=-2
$$

$$
-7+4=-3
$$

$$
-7+(-2)=-9
$$

- When we subtract negatives don't think 'subtract', but think - take away

So... $5-(-3)$
You have $\mathbf{5}$ good things and you take away 3 bad things
$>$ Since you don't have bad things to begin with introduce some in equilibrium (zero)
> Now you can take away the bad, but it leaves the good you brought.

DIAGRAM

+++++	+++	Now you can take away the negatives.
	---	++++++++
5 positives	This is 0	7

Example: Use diagrams to solve the following:
$-4-(-3)$
This situation is easier since we have what we need to take away. Just take 3 negatives away.

-6-(4) Now you can take away the positives.

$$
-6-(4)=-10
$$

$15-(-15) \quad$ Now you can take away the ne gatives.
$15-(-15)=30$
What are you left with?

$$
\begin{array}{ccc}
+++++ & +++++----- & ++++++++++ \\
+++++ & +++++----- & ++++++++++ \\
+++++ & +++++----- & ++++++++++ \\
\text { 15 positive } & \text { This is } 0 & 30 \text { positives }
\end{array}
$$

Multiplying and Dividing Integers

* When multiplying and dividing integers, two wrongs make a right and two rights make a right

$$
\begin{aligned}
& +*+=+ \\
& +*-=- \\
& -*+=- \\
& -*-=+
\end{aligned}
$$

Same $*$ Same is always positive

Opposites are always negative

Examples:

$5 *(-4)=-20$
$12 \div 3=4$
$-2 *(-3)=6$
$-18 \div 2=-9$
$5 *(-4)=-20$
$(-7) *(-4)=28$
$2 *-(-4)=8$
$-(-4) *(-3)=-12$
$15 \div(-5)=-3$

Review 1.2 - Practice Questions

Integers are both positive and negative numbers. Don't go too fast, think about each situation

1.	$7+(-4)=$	$(-6)-8=$	
3.	$19+(-7)=$	4.	$(-3)+(-4)=$
5.	$(-6)-(-12)=$	6.	$5+8=$
7.	$(-13)+8=$	10.	$(-17)-17=$
9.	$(-4)-17+8=$	12.	$8-17+(-7)=$
11.	$2+7-12=$	14.	$-12-4-(-17)=$
13.			

Multiply the following.

15.	$3 \cdot 4=$	16.	$(-3) \cdot 4=$
17.	$3 \cdot(-5)=$	18.	$(-2) \cdot(-6)=$
19.	$-4 \cdot 3 \cdot-2=$	20.	$7 \cdot-3 \cdot-4 \cdot 2=$
21.	$15 \cdot-3 \cdot 6=$	22.	$0 \cdot-3 \cdot 4=$

Divide the following.

23.	$14 \div(-2)=$	24.	$22 \div 11=$
25.	$-42 \div 6=$	26.	$-18 \div(-3)=$
27.	$(-20) \div 5=$	28.	$(-49) \div(-7)=$
29.	$0 \div-5=$	32.	$(-690) \div(-3) \div 2 \div 5=$
31.			

Section 1.3 - Fractions

Fractions

- What are they?
- They are rational numbers, which means they can be written as a terminating (stops) or repeating decimal
* Everything we do with fractions is dependent on if we know what a fraction is to begin with.

What is a Fraction?

- Piece of a whole
- Piece of something
- Something broken into pieces

And this is the representation:

Number of Pieces you Have

$$
\frac{7}{12}
$$

Number of Pieces that Make a Whole

Consider this:

- If you have 5 pieces and they are all one fifth in size, you have a whole.
- $\frac{5}{5}$ Think about a Kit Kat bar, 5 pieces all the same size, makes 1 bar!

The whole that is broken in to pieces is always the same size, namely: 1
If you have 4 pieces of size 4 and 24 pieces of size 24 , the whole they create is the same size.

Example:

SAME size WHOLE, DIFFERENT size PIECES

- So now let's estimate some fractions on a number line:

Put these numbers on the line, why did you choose where you did?

- The distinguishing thing about fractions is that every fraction is either a terminating (ends) or repeating decimal number.
- Numbers that neither terminate nor repeat cannot be expressed as fractions, Pi (π) being the most famous example, but there are an infinite number of them

Converting from a Fraction to a Decimal

- We can figure out the decimal expansion of any fraction, using good old fashion long division

Example: Write $\frac{5}{7}$ as a decimal number
This reads 5 divided by 7

12
Adrian Herlaar, School District 61

Equivalence

Equivalence is a term that means 'the same value'

- Two or more fractions can be equivalent, which means they have the same value, but they look different

Example: $\quad \frac{1}{2}$ is the same as $\quad \frac{2}{4} \quad \frac{3}{6} \quad \frac{4}{8} \quad \frac{15}{30} \quad$ etc.
The question is now do we get there?
We multiply the original fraction by 1 . The catch is that anything divided by itself is one. So by multiplying by 1 , we use a fraction instead, that will give us the desired denominator.

$$
1=\frac{3}{3}=\frac{5}{5}=\frac{21}{21}=\frac{-4}{-4}=\frac{156}{156} \text { etc }
$$

So to make equivalent fractions we multiply the original fraction by 1 , in the form of a fraction.

Example:

$$
\begin{array}{lll}
\frac{1}{3}=\frac{?}{6} & \rightarrow & \frac{1}{3} * \frac{2}{2}=\frac{2}{6} \\
\frac{5}{7}=\frac{15}{?} & \rightarrow & \frac{5}{7} * \frac{3}{3}=\frac{15}{21} \\
\frac{9}{4}=\frac{?}{16} & \rightarrow & \frac{9}{4} * \frac{4}{4}=\frac{36}{16}
\end{array}
$$

Comparing Fractions

\checkmark In order to accurately compare two or more fractions we need to make sure all the pieces are the same size. That means we need a common denominator.

Example:

$$
\begin{aligned}
& \qquad \frac{2}{3} \text { and } \frac{3}{4} \\
& \frac{2}{3} * \frac{4}{4}=\frac{8}{12}, \quad \frac{3}{4} * \frac{3}{3}=\frac{9}{12} \\
& \text { and } \frac{7}{8} \\
& \text { Since } \frac{9}{12} * \frac{8}{8}=\frac{48}{56}, \quad \frac{7}{8} * \frac{7}{7}=\frac{49}{56} \\
& \frac{3}{4} \text { is bigger than } \frac{8}{12} \\
& \text { Since } \frac{49}{56} \text { bigger than } \frac{48}{56} \\
& \frac{7}{8} \text { is bigger than } \frac{6}{7}
\end{aligned}
$$

Mixed vs Improper Fractions

Improper fractions: are fractions where the numerator (top number) is bigger than the denominator (bottom number)

Example: $\quad \frac{13}{5}, \frac{11}{3}$

Mixed fractions: are fractions with a whole number and a proper fraction

Example:

$$
3 \frac{1}{4}, \quad 7 \frac{2}{3}, \quad 2 \frac{5}{6}
$$

Converting from Mixed to Improper and Vice-Versa

- Again, think about your pieces (size and number)

So, $\frac{11}{4}$ means that you have 11 pieces and 4 make a whole

- Let's break that down then,
$4+4+3=11 \quad$ So we can have $\quad \frac{4}{4}+\frac{4}{4}+\frac{3}{4}$
- We still have 11 pieces of size 4.

And since $\frac{4}{4}$ is $1 \quad$ We can write it as $1+1+\frac{3}{4}$ or $2 \frac{3}{4}$

$$
\frac{11}{4}=2 \frac{3}{4}
$$

Vice Versa

$3 \frac{2}{5}$ means we have $1+1+1+\frac{2}{5} \quad$ but since we can write 1 as $\frac{5}{5}$
We can say we have, $\quad \frac{5}{5}+\frac{5}{5}+\frac{5}{5}+\frac{2}{5}=\frac{17}{5}$

$$
3 \frac{2}{5}=\frac{17}{5}
$$

Review Section 1.3 - Practice Problems

Place the following fractions on the number line below, add markings to justify your reasoning
1.

Why: \qquad
2.

Why: \qquad
3. $\frac{7}{12}$

Why: \qquad

Convert the following two fractions to decimals, show all the division steps
4. $\frac{5}{8}$
5. $\frac{4}{7}$

6. What makes two fractions equivalent? Why does changing to another form not change the value of the original fraction? Give me an example.

Convert the following fractions to equivalent fractions with the given denominator.
7. $\frac{3}{4}=\frac{}{16}$
8. $-\frac{2}{3}=\frac{-}{9}$
9. $\frac{12}{15}=\frac{}{45}$
10. $-\frac{4}{5}=\frac{}{100}$
11. $\frac{1}{7}=-\frac{}{14}$
12. $\frac{6}{7}=\frac{}{21}$
13. $\frac{12}{13}=\frac{}{169}$
14. $\frac{9}{11}=\frac{}{99}$
15. $-\frac{2}{9}=-\frac{}{36}$
16. $\frac{14}{3}=\frac{}{6}$
17. $\frac{18}{7}=\frac{}{28}$
18. $\frac{5}{8}=\frac{}{32}$
19. When attempting to compare two fractions, what makes it very easy?

Compare the following fractions using $<,\rangle,=$. Justify your reasoning.
20. $\frac{2}{3} \quad \frac{3}{4}$
21. $\frac{1}{2} \quad \frac{25}{50}$
22. $\frac{6}{7} \quad \frac{7}{8}$
23. $\frac{4}{5} \quad \frac{8}{10}$
24. $-\frac{2}{3} \quad \frac{2}{3}$
25. $\frac{12}{13} \quad \frac{11}{12}$
26. $\frac{3}{7} \quad \frac{5}{8}$
27. $\frac{6}{6} \quad \frac{13}{13}$
28. $\frac{8}{9} \quad \frac{6}{7}$

Convert the following fractions from MIXED to IMPROPER or VICE VERSE
29. $3 \frac{2}{7} \rightarrow$
30. $-4 \frac{1}{4} \rightarrow$
31. $6 \frac{3}{5} \rightarrow$
32. $-5 \frac{3}{11} \rightarrow$
33. $2 \frac{5}{6} \rightarrow$
34. $-4 \frac{3}{10} \rightarrow$
35. $\frac{17}{3} \rightarrow$
36. $-\frac{23}{5} \rightarrow$
37. $\frac{18}{7} \rightarrow$
38. $-\frac{23}{6} \rightarrow$
39. $\frac{19}{4} \rightarrow$
40. $-\frac{33}{10} \rightarrow$

Section 1.4 - Fractions Cont.

* The Simplified Form of a fraction is when it is reduced down so the numerator and denominator have no common factors
* The process is the same as finding equivalent fractions, but instead of multiplying, we divide
* The best way to understand this is to understand the prime factors of each number.

Example: $\frac{28}{54} \quad$ this is not simplified

- Right away I see that both numbers have a factor of 2 in common, but let's go further. Break both numbers down into prime factors.
- The Prime Factors of 28 are: 2,2 and 7
- The Prime Factors of 54 are: $2,3,3,3$,
$>$ So, when you see factors that they have in common, divide out those common factors

$$
\frac{28}{54} \div \frac{2}{2}=\frac{14}{27} \quad-\text { The only factors left aren't common, so it's simplified }
$$

$>$ This concept of division is where the idea of cancelling out factors comes from
What this means is we can rewrite $\frac{28}{54}$ as $\frac{2 * 2 * 7}{2 * 3 * 3 * 3}$
\checkmark Then when you have the same factor on the top and the bottom, they divide to give 1. And 1 multiplied by anything is doesn't change it.
\checkmark We can therefore say that when you have the same factor on top and bottom they cancel out.

$$
\frac{2 * 2 * 7}{2 * 3 * 3 * 3}=\frac{\not 2 * 2 * 7}{\not 2 * 3 * 3 * 3}=\frac{2 * 7}{3 * 3 * 3}=\frac{14}{27}
$$

$>$ The outcome of canceling out the factors is the Same as the division of the common factors
> Both work!

Adding and Subtracting Fractions

- There is often a lot of stress and frustration when we get to operations with fractions
- Once you can grasp what a fraction is and how to make equivalent fractions the rest is actually quite straightforward
- In order to accurately add or subtract fractions what do we need?
- Remember, the numerator: pieces we have and denominator: number of pieces in a whole.

Naturally what is required is that the pieces that make up the whole are the same size
So what do we need?
We need a COMMON DENOMINATOR (Same sized pieces), we get that using equivalent fractions
Let's do some examples:
Example: $\quad \frac{1}{3}+\frac{5}{7}=\frac{1}{3} * \frac{7}{7}+\frac{5}{7} * \frac{3}{3}=\quad \frac{7}{21}+\frac{15}{21}=\quad \frac{22}{21}$

The Lowest Common Denominator in this case is 21 , so we just multiply the fractions by each others denominator as a fraction over itself

Example: $\quad \frac{6}{7}-\frac{3}{4}=\quad \frac{6}{7} * \frac{4}{4}-\frac{3}{4} * \frac{7}{7}=\quad \frac{24}{28}-\frac{21}{28}=\quad \frac{3}{28}$

Example: $\frac{1}{2}+\frac{5}{6}=\frac{1}{2} * \frac{3}{3}+\frac{5}{6}=\frac{3}{6}+\frac{5}{6}=\frac{8}{6}, \quad$ but we can simplify that, $\quad \frac{8}{6} \div \frac{2}{2}=\frac{4}{3}$
The Lowest Common Denominator in this case is the denominator of one of the two fractions, so we just multiply one of the fractions by whatever multiple gets us the desired result

Example: $\quad \frac{3}{10}-\frac{1}{5}=\frac{3}{10}-\frac{1}{5} * \frac{2}{2}=\quad \frac{3}{10}-\frac{2}{10}=\quad \frac{1}{10}$

Adding and Subtracting Mixed Fractions

It is good form and will limit errors if you always CONVERT from Mixed to Improper Fractions before doing the operations.

Example: $\quad 2 \frac{1}{3}-1 \frac{3}{4}$

$$
2 \frac{1}{3}-1 \frac{3}{4} \rightarrow \quad \frac{7}{3}-\frac{7}{4} \rightarrow \quad \frac{7}{3} * \frac{4}{4}-\frac{7}{4} * \frac{3}{3} \rightarrow \quad \frac{28}{12}-\frac{21}{12}=\frac{7}{12}
$$

Example: $\quad-5 \frac{5}{6}+2 \frac{7}{8}$

$$
-5 \frac{5}{6}+2 \frac{7}{8} \rightarrow \quad-\frac{35}{6}+\frac{23}{8} \rightarrow \quad \frac{-35}{6} * \frac{4}{4}+\frac{23}{8} * \frac{3}{3} \rightarrow \quad \frac{-140}{24}+\frac{69}{24}=-\frac{71}{24}
$$

The Lowest Common Denominator in this case is 24 , so multiply the fractions by whatever multiple gets us the desired result

Example: $\quad 1 \frac{2}{3}+3 \frac{4}{5}-4 \frac{1}{2}$

$$
\begin{aligned}
& 1 \frac{2}{3}+3 \frac{4}{5}-4 \frac{1}{2} \rightarrow \quad \frac{5}{3}+\frac{19}{5}-\frac{9}{2} \rightarrow \quad \frac{5}{3} * \frac{10}{10}+\frac{19}{5} * \frac{6}{6}-\frac{9}{2} * \frac{15}{15} \\
& \rightarrow \quad \frac{50}{30}+\frac{114}{30}-\frac{135}{30}=\frac{29}{30}
\end{aligned}
$$

Section 1.4 - Practice Problems

Simplify the following fractions

1. $\frac{12}{36} \rightarrow$
2. $\frac{24}{120} \rightarrow$
3. $\frac{234}{468} \rightarrow$
4. $\frac{36}{48} \rightarrow$
5. $-\frac{14}{21} \rightarrow$
6. $-\frac{10}{50} \rightarrow$
7. $\frac{18}{27} \rightarrow$
8. $\frac{11}{77} \rightarrow$

Add the following fractions, leave answers in simplified form
9. $\frac{1}{5}+\frac{2}{5}$
11. $\frac{2}{7}+\frac{8}{21}$
13. $\frac{1}{3}+\frac{2}{5}$
15. $\frac{3}{4}+\frac{5}{6}$
17. $5 \frac{4}{7}+2 \frac{2}{5}$

	10. $\frac{3}{5}+\frac{2}{15}$
12. $-\frac{3}{4}+\frac{1}{4}$	

14. $\frac{11}{12}+\frac{4}{7}$
15. $3 \frac{2}{5}+4 \frac{1}{3}$
16. $-2 \frac{3}{8}+3 \frac{5}{6}$

Subtract the following fractions, leave answers in simplified form

19. $\frac{3}{5}-\frac{2}{5}$	-
21. $\frac{7}{8}-\frac{9}{11}$	20. $\frac{1}{7}-\frac{3}{14}$
25. $\frac{3}{4}-\frac{5}{6}$	22. $-\frac{3}{17}-\frac{1}{2}$
24. $3 \frac{2}{5}-2 \frac{2}{3}-4 \frac{1}{3}$	
26. $-2 \frac{3}{4}-3 \frac{5}{8}$	

Perform the combined operations, leave answers as an improper fraction in simplified form
27. $\frac{3}{4}+\frac{5}{6}-\frac{2}{3}$
29. $-5 \frac{4}{8}+2 \frac{13}{26}-4 \frac{5}{10}$

$$
\begin{aligned}
& \text { - |28. } 2 \frac{3}{5}+4 \frac{2}{3}-\left(-1 \frac{2}{15}\right) \\
& \text { 30. }-3 \frac{1}{4}+1 \frac{2}{3}-\left(-3 \frac{5}{6}\right)
\end{aligned}
$$

Section 1.5 - Multiplying and Dividing Fractions

Multiplication of Fractions

- It is simply TOPS with TOPS and BOTTOMS with BOTTOMS

$$
\frac{\text { Numerator } * \text { Numerator }}{\text { Denominator } * \text { Denominator }}
$$

Example: $\quad \frac{2}{3} * \frac{5}{7}=\frac{2 * 5}{3 * 7}=\frac{10}{21}$

Example: $\quad \frac{-5}{9} * \frac{1}{4}=\frac{-5 * 1}{9 * 4}=\frac{-5}{36}=-\frac{5}{36}$

Example: $\quad \frac{4}{-7} * \frac{-3}{5}=\frac{4 *-3}{-7 * 5}=\frac{-12}{-35}=\frac{12}{35}$

Example: $\quad-\frac{1}{5} * \frac{6}{11}=\frac{-1 * 6}{5 * 11}=\frac{-6}{55}=-\frac{6}{55}$

Simple enough?

Now, what we can do though is SIMPLIFY the question first by identifying the Common Factors, just like when we simplified individual fractions.

Example:

$$
\begin{aligned}
& \frac{14}{49} \text { can be written as: } \frac{2 * 7}{7 * 7} \text { and since } \frac{7}{7} \text { is equal to } 1 \text { what we have left is: } \\
& \frac{2}{7} * 1=\frac{2}{7} \quad \text { see how we cancelled out the common factors }
\end{aligned}
$$

Now Watch this...

We can do the same steps before we multiply

Example: $\quad \frac{2}{7} * \frac{5}{8}$

$$
\frac{2}{7} * \frac{5}{8} \rightarrow \quad \frac{2}{7} * \frac{5}{2 * 4} \rightarrow \frac{2 * 5}{2 * 4 * 7} \rightarrow \quad \frac{\not 2 * 5}{\not 2 * 4 * 7} \rightarrow \quad \frac{5}{4 * 7}=\frac{5}{28}
$$

Let's try some.
Example: $\quad \frac{5}{12} * \frac{3}{20}$

$$
\frac{5}{12} * \frac{3}{20} \rightarrow \quad \frac{5}{3 * 4} * \frac{3}{4 * 5} \rightarrow \frac{5 * 3}{3 * 4 * 4 * 5} \rightarrow \quad \frac{\not \square * \not Z}{\not 2 * 4 * 4 * \not 2} \rightarrow \quad \frac{1}{4 * 4}=\frac{1}{16}
$$

$$
\begin{array}{ll}
\text { Example: } & -\frac{2}{3} * \frac{9}{14} \\
\frac{-2}{3} * \frac{9}{14} \rightarrow & \frac{-2}{3} * \frac{3 * 3}{2 * 7} \rightarrow \quad \frac{(-1) 2 * 3 * 3}{3 * 2 * 7} \rightarrow \\
& \frac{(-1) 2 * \not 2 * 3}{\not 2 * 2 * 7} \rightarrow
\end{array} \frac{(-1) * 3}{7}=\frac{-3}{7}=-\frac{3}{7}
$$

Example: $\quad \frac{21}{36} * \frac{42}{153}$
$\frac{21}{36} * \frac{42}{153} \rightarrow \quad \frac{3 * 7}{6 * 6} * \frac{6 * 7}{3 * 3 * 17} \rightarrow \quad \frac{3 * 7 * 6 * 7}{6 * 6 * 3 * 3 * 17} \rightarrow \quad \frac{\not 2 * 7 * \not 6 * 7}{6 * 6 * \not 又 * 3 * 17} \rightarrow \quad \frac{7 * 7}{6 * 3 * 17}=\frac{49}{306}$

Example: $\quad-\frac{6}{12} *-\frac{2}{3}$
$\frac{-6}{12} * \frac{-2}{3} \rightarrow \quad \frac{(-1) * 2 * 3}{2 * 2 * 3} * \frac{(-1) * 2}{3} \rightarrow \quad \frac{(-1) * 2 * 3 *(-1) * 2}{2 * 2 * 3 * 3} \rightarrow \quad \frac{(-1) * 2 * \not 3 *(-1) * 2}{2 * 2 * \not Z * 3}$

$$
=\frac{1}{3}
$$

Division of Fractions

- First l'll show you the somewhat complicated but quite gorgeous method.

You may have been told somewhere along the line that dividing fractions is just flipping the second fraction and changing the division sign to multiplication, how many of you heard this before?

Do you know why?
Here's why.

Example:

$\frac{1}{2} \div \frac{2}{3}$ well the fraction bar essentially means division so we can rewrite this as ...

$$
\frac{\frac{1}{2}}{\frac{2}{3}}
$$

yes it is one big fraction, made up of two fractions

Now let's make this into an equivalent fraction with a denominator of one. Remember that in order for it to be equivalent we need to multiply the big fraction by 1.

$$
\frac{\frac{1}{2} * \frac{3}{2}}{\frac{2}{3} * \frac{3}{2}} \text { this second portion is equal to } 1
$$

So what do we get...

$$
\frac{\frac{1}{2} * \frac{3}{2}}{\frac{6}{6}}=\frac{\frac{1}{2} * \frac{3}{2}}{1}=\frac{1}{2} * \frac{3}{2}
$$

We ended up with,

$$
\frac{1}{2} * \frac{3}{2}
$$

So what has happened? The division symbol changed to multiplication and the fraction flipped.

And the result is:

$$
\frac{1}{2} * \frac{3}{2} \quad=\quad \frac{3}{4}
$$

Now the simpler method, the logic here is awesome...
Consider our starting point...

$$
\frac{1}{2} \div \frac{2}{3} \text { how can I divide up pieces if they are the same size? }
$$

If I get a COMMON DENOMINATOR:
$\frac{1}{2}=\frac{3}{6} \quad$ and $\quad \frac{2}{3}=\frac{4}{6}$
So my equation now looks like:

$$
\frac{3}{6} \div \frac{4}{6}
$$

If you now divide the same sized pieces,

$$
\frac{3 \div 4}{6 \div 6}=\frac{3 \div 4}{1}=3 \div 4 \quad=\quad \frac{3}{4}
$$

BOOM!
You're turn...
Example: $\quad \frac{2}{3} \div \frac{5}{7}$

Denominator Method

$$
\frac{2}{3} \div \frac{5}{7}=\frac{14}{21} \div \frac{15}{21}=\frac{14 \div 15}{21 \div 21}=\frac{14 \div 15}{1}=\frac{14}{15}
$$

$$
\frac{2}{3} \div \frac{5}{7}=\frac{2}{3} * \frac{7}{5}=\frac{14}{15}
$$

Example: $\quad \frac{12}{13} \div \frac{6}{11}$
Flip Method
Denominator Method

$$
\begin{gathered}
\frac{12}{13} \div \frac{6}{11}=\frac{12}{13} * \frac{11}{6}=\frac{2}{13} * \frac{11}{1}=\frac{22}{13} \quad \frac{12}{13} \div \frac{6}{11}=\frac{132}{143} \div \frac{78}{143}=\frac{132 \div 78}{143 \div 143}=\frac{132 \div 78}{1} \\
=\frac{132}{78}=\frac{66}{39}=\frac{\mathbf{2 2}}{\mathbf{1 3}}
\end{gathered}
$$

Simplified both of these to get our final answer.
Adrian Herlaar, School District 61

Section 1.5 - Practice Questions

Multiply the following fractions, simplify before you multiply if desired, leave answer in simplified form

1. $\frac{1}{3} * \frac{12}{7}$
2. $\frac{12}{14} * \frac{7}{8}$
\geq 2. $\quad-\frac{8}{9} * \frac{21}{16}$
3. $\frac{5}{14} *\left(-\frac{21}{10}\right) * \frac{15}{7}$
4. $\frac{8}{25} * \frac{35}{4} * \frac{2}{5}$
5. $-\frac{7}{4} * \frac{2}{21} * \frac{14}{8}$

Divide the following fractions, simplify when you can, leave answer in simplified form
7. $\frac{2}{3} \div \frac{8}{9}$

	8. $-\frac{3}{4} \div \frac{15}{8}$

9. $\frac{12}{5} \div 4$
10. $4 \div \frac{12}{15}$

Answer the following, leave answer as a simplified fraction, improper if applicable
15. $3 \frac{1}{2} * 2 \frac{1}{3}$
_ $16.3 \frac{1}{2} \div 2 \frac{1}{3}$
17. $-5 \frac{2}{5} * 3 \frac{1}{3}$
18. $-5 \frac{2}{5} \div 3 \frac{1}{3}$
19. $3 \frac{3}{4} \div 1 \frac{1}{8} * 1 \frac{2}{25}$
20. $3 \frac{1}{4} \div 2 \frac{7}{16} * 1 \frac{1}{8}$

Section 1.6 - Order of Operation - BEDMAS or PEDMAS

- There is a sequence of solving equations, an order to follow, just like a recipe.
- It goes like this:

B - Brackets:

E - Exponents:
D - Division:

M - Multiplication:

A - Addition:

S - Subtraction:

Get inside any brackets then start the list again, are there more? Otherwise continue..

Solve any exponential statement and write as a result
Do any multiplication and division statements at the same time from left to right

Do any multiplication and division statements at the same time from left to right

Do any remaining addition and subtraction at the same time, from left to right

Do any remaining addition and subtraction at the same time, from left to right

Example:

$$
\begin{gathered}
2 * 3+5 \div 5 \\
6+5 \div 5 \\
6+1 \\
7
\end{gathered}
$$

Example:

$$
\begin{gathered}
4^{2} * 2+6-3 \\
16 * 2+6-3 \\
32+6-3 \\
38-3
\end{gathered}
$$

Example:

$$
\begin{gathered}
5(2+3-6) * 4 \div 2 \\
5(5-6) * 4 \div 2 \\
5(-1) * 4 \div 2 \\
(-5) * 4 \div 2 \\
-20 \div 2 \\
-10
\end{gathered}
$$

Example:

$$
\begin{gathered}
5+\left\{6^{2} \div 2(5-2+3)\right\} \\
5+\left\{6^{2} \div 2(3+3)\right\} \\
5+\left\{6^{2} \div 2(6)\right\} \\
5+\{36 \div 2(6)\} \\
5+\{18(6)\} \\
5+\{108\} \\
113
\end{gathered}
$$

Example:

$$
\begin{gather*}
(15-4+5 \div 5-2 * 3)^{2} \\
(15-4+1-2 * 3)^{2} \\
(15-4+1-6)^{2} \\
(11+1-6)^{2} \\
(12-6)^{2} \tag{6}
\end{gather*}
$$

36

Section 1.6 - Practice Questions

Calculate the following using your Order of Operations

1.	$2 * 3$	$2 * 3+2 * 4$	
3.	$4 * 6-5 * 3$	4.	$16-8 \div 4-2$
5.	$12 \div 3-16 \div 8$	6.	$25-18 \div 6-10$
7.		8.	

Calculate the following using your Order of Operations

9.	$6-(2 * 3)$	10.	$(6-2)+3$
11.	$-8-(5-3)$	12.	$(-8-5)-3$
13.	$-(8-3)+(3-7)$	14.	$100 \div(10 \div 5)$
15.	$(128 \div 32) \div 2$	16.	$5 * 10-(7+3)-24$

Calculate the following using your Order of Operations

17.	$3 * 2^{3}$	18.	$(3 * 2)^{3}$
19.	$-5-3^{2}$	20.	$(-5-3)^{2}$
21.	$\frac{6+3 * 4}{6+3 * 4}$	22.	$\left(2^{4} \div 2^{2}\right) *\left(2^{5} \div 2^{3}\right)$
23.	24.	$\frac{(6+3)(4)}{(6+3)(4)}$	

Simplify the following using your Order of Operations
25. $12+2\left[(20-8)-\left(1+3^{2}\right)\right]$
26. $\frac{(-2)^{3}+4^{2}}{3-5^{2}+3 * 6}$
27. $20 \div 4+\left\{2 * 3^{2}-[3+(6-2)]\right\}$

Review 1.7 - Percentages

What is a percentage?

- It is a ratio.... Which means FRACTIONS

The general form of a percentage is:

$$
\frac{\text { anything }}{100}, \quad \text { for example: } \quad \frac{78}{100} \text { is } 78 \% \quad \frac{5}{100} \text { is } 5 \%
$$

So when we are working with percentages we need to represent them as decimals and not \% So think percentage and money.

$$
\begin{aligned}
100 \% & =\$ 1.00 \\
76 \% & =\$ 0.76 \\
50 \% & =\$ 0.50 \\
23 \% & =\$ 0.23 \\
4 \% & =\$ 0.04
\end{aligned}
$$

Converting from Decimals to Percent and Percent to Decimals

We have to convert to decimal form when we work with percentages

- If we have a fraction with denominator of 100 it is easy to convert to percent.

Example:

$$
\frac{78}{100}=0.78=78 \%
$$

- If we have fractions with a denominator that can multiply to 100 is it still pretty easy to get percent

Example:

$\frac{12}{50}=\frac{24}{100}=0.24=24 \%$
$\frac{3}{20}=\frac{15}{100}=0.15=15 \%$
$\frac{19}{25}=\frac{76}{100}=0.76=76 \%$

- If we have fractions with a denominator that can't multiply to 100 , we have to divide out the fraction to get the decimal expansion.

Example:

$\frac { 3 } { 1 2 } = \frac { 1 } { 4 } = 4 \longdiv { 0 . 2 5 } \quad \frac { 5 } { 8 } = 8 \longdiv { 5 }$
$\frac { 1 2 } { 1 5 } = 1 5 \longdiv { 0 . 8 }$

Percentages to Fractions (Simplified)

- This is simple enough.
- Start as a fraction over 100 and simplify it

Example:

$$
\begin{gathered}
78 \%=\frac{78}{100}=\frac{39}{50} \\
64 \%=\frac{64}{100}=\frac{32}{50}=\frac{16}{25} \\
25 \%=\frac{25}{100}=\frac{5}{20}=\frac{1}{4}
\end{gathered}
$$

Figuring out percentages of numbers

- This is used all the time when we think about discounts and deals.
- All we need to do here is good old fashion multiplication

Example: What is 37% of 200 ?

$$
200 \cdot 37 \% \quad \rightarrow \quad 200 \cdot 0.37=74
$$

Example: What is 10% of 86

$$
86 \cdot 10 \% \quad \rightarrow \quad 86 \cdot 0.10=8.6
$$

Example: What is 80% of 1200

$$
1200 \cdot 80 \% \quad \rightarrow \quad 1200 \cdot 0.80=960
$$

It works the same with money.
Example: What is 30% off of $\$ 45$

$$
\$ 45 \cdot 30 \% \quad \rightarrow \quad \$ 45 \cdot 0.30=\$ 13.50
$$

Example: What is 20% off of $\$ 120$

$$
\$ 120 \cdot 20 \% \quad \rightarrow \quad 120 \cdot 0.20=\$ 24
$$

There is more then one way to do this.... Can you show me more?

Lastly how can we calculate tax?

- When we calculate tax first we have to change the percentage to a decimal
- Next we multiply by the price
- Then we add that amount to the original price

Example: What is the final purchase price of a $\$ 59$ item with 5% GST

There are two ways to do this too.... What's the difference between the two?	
$\$ 59 \cdot 5 \% \rightarrow \$ 59 \cdot 0.05=\$ 2.95$	$\$ 59 \cdot 105 \% \rightarrow \quad \$ 59 \cdot 1.05=\$ 61.95$
$\$ 59+\$ 2.95=\$ 61.95$	$\$ 61.95$

Example: What is the final purchase price of a $\$ 145$ item with 12% tax

There are two ways to do this too.... What's the difference between the two?	
$\$ 145 \cdot 12 \% \rightarrow \$ 145 \cdot 0.12=\$ 17.40$	$\$ 145 \cdot 112 \% \quad \rightarrow \quad \$ 145 \cdot 1.12=\$ 162.40$
$\$ 145+\$ 17.40=\$ 162.40$	$\$ 162.40$

Example: What is the final purchase price of a $\$ 399.95$ PS4 with 7% tax

There are two ways to do this too.... What's the difference between the two?	
$\$ 399.95 \cdot 7 \% \rightarrow \$ 399.95 \cdot 0.07=\$ 28$	$\$ 399.95 \cdot 107 \% \rightarrow \$ 399.95 \cdot 1.07=\$ 427.95$
$\$ 399.95+\$ 28.00=\$ 427.95$	$\$ 427.95$

Section 1.7 - Practice Questions

Convert from Fractions to Decimals to Percentages

	Fraction	Decimal	Percentage
1.	$\frac{3}{5}$		
2.	$\frac{7}{25}$	$\frac{2}{3}$	
3.	$\frac{3}{8}$		
4.			

Convert from Percentages to Simplified Fractions

	Percentage	Decimal	Fraction
5.	78%		
6.	35%		
7.	98%		
8.	25%		

Find the Percentage of the Following Numbers

Percentages and Money

15. If you wanted to buy a new car for $\$ 37500$ and had to pay GST (5\%) how much is the tax and how much will the car cost you?
16. You've gone shopping and you have bought $\$ 327.95$ dollars worth of clothes and shoes, there is a 30% discount on the items and then you have to pay GST (5\%) and PST (7\%), how much is the total purchase going to cost you?

Answer Key

Section R-1.1

1. See Written Key
2.

a) 97.1
b) -5.34
c) 1215.004
d) 1400012
e) 86.0007
3.
a) 8.9
b) 2.7
c) 5.1
d) 9.8
4.
a) 8.95
b) 2.67
c) 5.15
d) 9.77
5.
a) 8.947
b) 2.673
c) 5.149
d) 9.772
6.
a) 94.7
b) 86.73
c) 275.382
d) 275.38
7.
a) 89
b) 2674
c) 515
d) 97
8.
a) 90
b) 2670
c) 510
d) 100
9.
a) 100
b) 2700
c) 500
d) 100
10.
a) 1000
b) 3000
c) 6000
d) 9000

Section R-1.2

1.	3
2.	-14
3.	12
4.	-7
5.	6
6.	13
7.	12
8.	8
9.	-5
10.	-34
11.	-13
12.	-16
13.	-3
14.	1
15.	12
16.	-12
17.	-15
18.	12
19.	24
20.	168
21.	-270
22.	0
23.	-7
24.	2
25.	-7
26.	6
27.	-4
28.	7
29.	-617
30.	23
31.	0
32.	Undefined

Section R-1.3

1.	See Written
2.	See Written
3.	See Written
4.	0.625
5.	0.571428 Repeat
6.	Answers Vary
7.	12
8.	-6
9.	36
10.	-80
11.	-2
12.	18
13.	156
14.	81
15.	8
16.	28
17.	72
18.	20
19.	Answers Vary
20.	$<$, need reason
21.	$=$ need reason
22.	$<$ need reason
23.	$=$ need reason
24.	$<$, need reason
25.	$>$, need reason
26.	$<$, need reason
27.	$=$ need reason
28.	$>$, need reason

| 29. $23 / 7$ |
| :--- | :--- |
| 30. $-17 / 4$ |
| 31. $33 / 5$ |
| 32. $-58 / 11$ |
| 33. $\quad 17 / 6$ |
| 34. $-43 / 10$ |
| 35. $5 \frac{2}{3}$ |
| 36. $-4 \frac{3}{5}$ |
| 37. $2 \frac{4}{7}$ |
| 38. $-3 \frac{5}{6}$ |
| 39. $4 \frac{3}{4}$ |
| 40. $-3 \frac{3}{10}$ |

Section R-1.5
Section R-1.6

1.	12
2.	14
3.	9
4.	12
5.	2
6.	12
7.	-1
8.	-18
9.	0
1.	7
11.	-10
12.	-16
13.	-9
14.	50
15.	2
16.	16
17.	24
18.	216
19.	-14
20.	64
21.	16
22.	16
23.	1
24.	1
25.	16
26.	-2
27.	16
28.	1

1.	$4 / 7$
2.	$-7 / 6$
3.	$3 / 4$
4.	$28 / 25$
5.	$-45 / 28$
6.	$-7 / 24$
7.	$3 / 4$
8.	$-2 / 5$
9.	$3 / 5$
10.	5
11.	$10 / 11$
12.	$-4 / 9$
13.	$-2 / 3$
14.	$-7 / 5$
15.	$49 / 6$
16.	$3 / 2$
17.	-18
18.	$-81 / 50$
1.	$18 / 5$
20.	$3 / 2$

1.	$1 / 3$
2.	$1 / 5$
3.	$1 / 2$
4.	$3 / 4$
5.	$-2 / 3$
6.	$-1 / 5$
7.	$2 / 3$
8.	$1 / 7$
9.	$3 / 5$
10.	$11 / 15$
11.	$14 / 21$
12.	$-1 / 2$
13.	$11 / 15$
14.	$125 / 84$
15.	$19 / 12$
16.	$116 / 15$
17.	$279 / 35$
18.	$35 / 24$
19.	$1 / 5$
20.	$-1 / 14$
21.	$5 / 88$
22.	$-23 / 34$
23.	$-1 / 12$
24.	$-22 / 21$
25.	$47 / 15$
26.	$-51 / 8$
27.	$11 / 12$
28.	$42 / 5$
29.	$-15 / 2$
30.	$9 / 4$

1.	$0.60,60 \%$
2.	$0.28,28 \%$
3.	$0.66,66.6 \%$
4.	$0.375,37.5 \%$
5.	$0.78, \frac{39}{50}$
6.	$0.35, \frac{7}{20}$
7.	$0.98, \frac{99}{50}$
8.	$0.25, \frac{1}{4}$
9.	45.5
10.	6973.95
11.	99
12.	10
13.	4.6
14.	15004.14
15.	$\$ 39375$
16.	$\$ 257.11$

