Conversions of Multiple Units at the Same Time

- This is the most challenging situation, but the ratio work and cancelling of the units works exactly the same

Example:

How fast in meters/second is a car travelling at: 70km/hr

Solution:

$$
\frac{70 \mathrm{Km}}{1 \mathrm{hr}} * \frac{1000 \mathrm{~m}}{1 \mathrm{Km}} * \frac{1 / h r}{60 \mathrm{mins}} * \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=\frac{70 * 1000 \mathrm{~m}}{60 * 60 \mathrm{sec}}=\frac{70000 \mathrm{~m}}{3600 \mathrm{sec}}=\mathbf{1 9 . 4} \frac{\boldsymbol{m}}{\boldsymbol{s}}
$$

Kilometers cancelled top and bottom
Hours cancelled top and bottom
Minutes cancelled top and bottom

Example:

The speed of light is 299792458 meters /second
A light year is a measurement of how far light travels in kilometers in a year. Knowing how fast light travels we can use our ratios to figure this out!

Solution:

Meters cancelled top and bottom
Seconds cancelled top and bottom
Minutes cancelled top and bottom
Hours cancelled top and bottom
Days cancelled top and bottom

Practice

- Set up all your ratios so that we can see the units cancelling top and bottom!

1. If I can run at $8 \mathrm{~km} / \mathrm{hr}$ how fast am I going in m / s ?
2. You watch an ant move 8 cm in 3seconds, how fast is it travelling in $\mathrm{km} / \mathrm{hr}$?
3. If a tank fills at $600 \mathrm{~mL} /$ second how fast does it fill in $L /$ minute?
4. If you are strong enough to push an object, with constant acceleration at 2 meters $/ \mathrm{sec}$, how far in kilometers can you push it in 2 weeks?
