Calculus 12 : Ch. 2: Derivatives

2.1 Derivatives
A derivative is defined as a limit and is used to calculate the slope of the line tangent to a curve. From
section 1.4 the slope of the tangent line was defined as
fla+h)—f(a)
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And in section 1.5 it was used to calculate the instantaneous velocity from the position function for an
object. In fact, any instantaneous rate of change can be calculated in this way. Therefore, derivatives
have important applications in all branches of science and engineering.

The derivative of a function f at a number a is
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If the limit exists.

Another way to define the derivative of a function at a point a is

@ = tim [ =@
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Ex. 1
If f(x) = 2x% — 5x + 6, find f'(4), the derivative of f at 4.
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Interpretation of the Derivative

As the slope of the tangent. The tangent line to the curve y = f (x) at the point (a, f(a)) is the line
through (a, f(a)) with slope f'(a).

As a rate of change. The instantaneous rate of change of y = f(x) with respect to x when x = a
2. | is equal to f'(a). For a moving object, if s = f(t) is the position function of an object then v =
f'(a) is the instantaneous velocity of the object at time t = a.
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Ex. 2
Find the derivative of f(x) = x% — 3x at any number a. Then use it to find the slopes of the tangents to

f(x) whenx =1,2,3,4.
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The Derivative as a Function

As can be seen from the previous example, the derivative of a function f(x) can be calculated at any 25 ach .
value of x that is part of the domain of the derivative f'(x) by allowing the x to vary throughout the ;
domain of f'(x). In this way, the derivative of a function can be thought of as another function onto

itself.

Given a function f, the derivative of f is the function f’ defined by

100 = [ RS

The domain of this new function f' is the set of all numbers x for which the limit exists. Since the
definition of f'(x) contains the original function f(x), the domain of f' will always be a subset (or
possibly the same domain) as f.

Ex.3
Find the derivative of the function f(x) = x2.
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Ex. 4
If f(x) = Vx + 2, find f' and state the domains of f and f".

.C@-.»Zm ﬁoucL:) ﬁm A_J?+kazl—lx+2:

ko N 3 — ,_‘._ __:_“_"'—'

!

L xaha2 = (x4 i+ 2 —pox e
K30 Jzao +) J P oy 8 { !
h (N |I\( xxhal *© x-x—z_) /k’( scah 42 *&Tz}}

0. |

..-——-"-"'—--'-—_-

}\-—')o m *m

Ex.5

Find f' if f(x) = 3’;*_12.
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Ex. 6
Use the given graph of f to sketch the graph of f'
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Other Notations
German mathematician Gottfried Leibniz developed another notation for writing derivatives in the mid-
1670s:

d
If y = f(x), we write d_ic] =f'(x)

The results of Examples 3, 4, and 5 are expressed as follows.

d
Ify = x2, then %= 2x
dy 1
Ify=\/x+2,then£=2m
x
x+1 dy 5
Ify-—3 Z'then—d___(3x—2)2

This notation can serve as a reminder of the procedure for finding a derivative:

dy y Ay
dx  axs0Ax




Calculus 12 %\o(‘;uﬁ!m‘h’ .axm VU(" cal Ch. 2: Derivatives
/  oas

This is because both the independent variable x and the dependent variable y are indicated. For instance,
if the position s of a particle is given as a function of time t, then the instantaneous velocity of the particle
is expressed as
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Using the Leibniz notation, we can think of the process of finding the derivative of a function as an
operation called differentiation, which is performed on a function f to produce a new function f' called
the derivative. Thought of this way we can write y= fod
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In this way, — can be thought of as a differentiation operator. So, we could write

A 2 d d
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Sometimes the symbols D or D, (meaning differentiate with respect to x) are also used as differentiation
operators. Thus, we have the following equivalent notations for the derivative of y = f(x):

dy
fl(x) = y—d———f(x) Df(x)=D

In Leibniz notation, if you want to indicate that the derivative should be evaluated at a specific number a,

write: / cuohk’d\e He o(anw:.((ue d XzO

dy dy
dxl., ' ax

x=a

Which is the same as f'(a).
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% A function f is differentiable at a if f'(a) exists. A function is differentiable on an interval if it is
differentiable at every number in that interval. In Ex. 3 f(x) = x? is differentiable on R and in Ex. 4

f(x) = Vx + 2 is differentiable fofjx > —2. ) \ -x |Cy<b
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Ex. 7 KAr X7
Show that the function f(x) = |x| is not differentiable at x = 0. /
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