1.3 One-Sided Limits

Consider the function described below.

$$f(x) = \begin{cases} x^2, & \text{if } x \le 1\\ 3 - x, & \text{if } x > 1 \end{cases}$$

we call this a piecewise $f(x) = \begin{cases} x^2, & \text{if } x \le 1 \\ 3-x, & \text{if } x > 1 \end{cases}$ Solve it in pieces.

Compute f(0), f(1), and f(2)

f(0)	f(1)	f(2)
0 < 1	151	271
$f(x) = x^{2}$ $f(x) = 0^{2}$ $f(x) = 0$	$f(x) = x^{2}$ $f(t) = 1^{2}$ $f(t) = 1$	fcx) = 3-x f(2) = 3-2 fcv = 1 fcv = 1

Now evaluate what happens as x approaches 1...

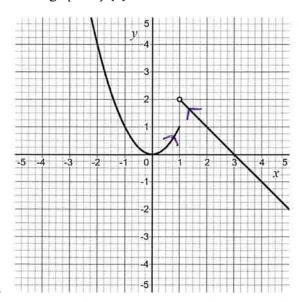
Approaching from the Left		Approaching from the Right	
x < 1	$f(x) = x^2$	x > 1	f(x) = 3 - x
0.9	0.81	1.1	1.9
0.99	0.9801	1.01	1.99
0.999	0.998 001	1.001	1.999

Written mathematically, we can say

$$\lim_{x\to 1^-} f(x) = 1$$

$$\lim_{x\to 1^+} f(x) = 2$$

A better understanding of what is happening with this function as x approaches 1 can be found by looking at the graph of f(x).



lin fex # lin x+1 x+1+

so lin fex DNE
x+1

Limits for any function f(x) as x approaches some value a can be considered from the left (x < a) and from the right (x > a). Written mathematically

$$\lim_{x \to a^{-}} f(x) = L$$

And is read "the limit of f(x) as x approaches a from the **left** equals L." Similarly, "the limit of f(x) as x approaches a from the right equals L" can be written

$$\lim_{x \to a^+} f(x) = L$$

Evaluating the limit from both the left and right sides of the number a provides a means of testing whether the limit as f(x) as x approaches a exists.

If
$$\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$$
, then $\lim_{x \to a} f(x)$ does not exist.

If
$$\lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$$
, then $\lim_{x \to a} f(x) = L$.

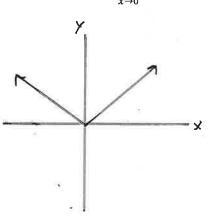
For computing one-sided limits, the properties presented in the previous section still apply.

Find $\lim_{x\to 0^+} \sqrt{x}$.

e Demain Reduction {x | x e | R, x 70 }

lin X = Vin X

Ex. 2 Show that $\lim_{x\to 0} |x| = 0$.



$$|x| = \begin{cases} x & \text{if } x 7.0 \\ -x & \text{is } x < 0 \end{cases}$$

lin (-x)

li |x| = lin |x|

Recall DNE meens Does not exist

Ex. 3

The **Heaviside function** H is defined by

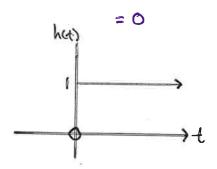
$$H(t) = \begin{cases} 0, & \text{if } t < 0 \\ 1, & \text{if } t \ge 0 \end{cases}$$

This function is named after the electrical engineer Oliver Heaviside (1850 – 1925) and can be used to describe an electric current that is switched on at time t = 0. Evaluate, if possible, each of the following.

(a)
$$\lim_{t\to 0^-} H(t)$$

(b)
$$\lim_{t\to 0^+} H(t)$$

(c)
$$\lim_{t\to 0} H(t)$$



= 1

DNE

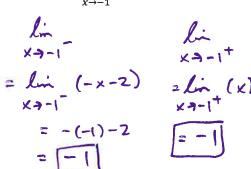
luits LHS & lu RHS

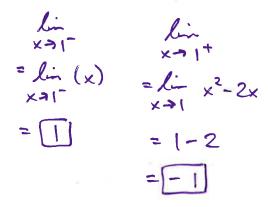
Ex. 4

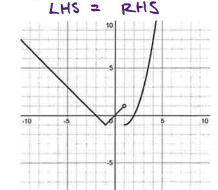
Determine whether the limits below exist for the following function.

$$f(x) = \begin{cases} -x - 2, & \text{if } x \le -1\\ x, & \text{if } -1 < x < 1\\ x^2 - 2x, & \text{if } x \ge 1 \end{cases}$$

(a)
$$\lim_{x \to -1} f(x)$$







LHS land & RHS but

Sc

lin fix DOES NOT EXEST

lin fex = -1

Discontinuities

Recall the definition of a continuous function requires that the limit of the function as x approaches amust be equal to the value of the function at that point.

$$\lim_{x \to a} f(x) = f(a)$$

Implicitly this definition requires three things if f is continuous at a

- 1. f(a) is defined (so a is in the domain of f)
- 2. $\lim_{x \to a} f(x)$ exists
- $3. \quad \lim_{x \to a} f(x) = f(a)$

If f is not continuous at a, we say f is **discontinuous** at a, or f has a **discontinuity** at a.

Find where the following functions are discontinuous.

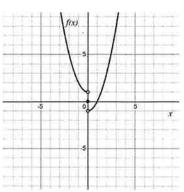
(a)
$$f(x) = \begin{cases} x^2 + 1, & \text{if } x < 0 \\ 0, & \text{if } x = 0 \\ x^2 - 1, & \text{if } x > 0 \end{cases}$$

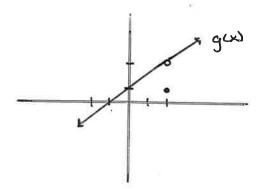
(b)
$$g(x) = \begin{cases} x + 1, & \text{if } x \neq 2 \\ 1, & \text{if } x = 2 \end{cases}$$

= (2)+1

ling(x) bus... x=2 g(2)=1

Discontinuity at x=2





Ex. 6

The cost of a long-distance phone call from Pine Bay to Hester is 26¢ for the first minute and 22¢ for each additional minute (or part of a minute). There is a minimum charge of 34¢ on all calls. Draw the graph of the cost C (in dollars) of a phone call as a function of the time t (in minutes). Where are the discontinuities of this function?

$$C(t) = 0.34$$
 if $0 < t \le 1$
 $C(t) = 0.26 + 0.72 = 0.48$ if $1 < t \le 2$
 $C(t) = 0.76 + 2(0.22) = 0.70$ if $2 < t \le 3$
 $C(t) = 0.26 + 3(0.72) = 0.92$ if $3 < t \le 4$

Consider:

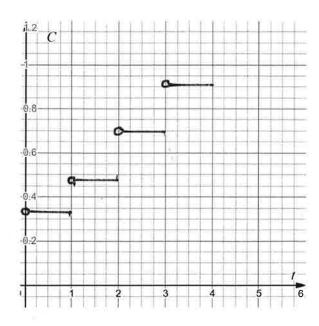
this pattern continues so we hove discontinuities

lin c(6) = 0.34

at t= 1,2,3,...

li ((1)=0.48

This is called a STEP FUNCTION



Homework Assignment

Exercise 1.3: #1, 3, 4acegi, 5, 7, 8, 10 ac, 11, 14