## 1.1 Linear Functions and the Tangent Line Problem

A *linear function* is a function f of the form

$$f(x) = mx + b \qquad \text{yand}$$

The graph has the form of the equation y = mx + b which is the equation of a line in **slope**-intercept form with slope m and y-intercept b.

Recall that for any line that is nonvertical, the *slope* of the line that passes through the points  $P_1(x_1, y_1)$ and  $P_2(x_2, y_2)$  is defined by

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$
 means "e

Because slope is a ratio of a change in y to a change in x, it can be interpreted as a rate of change of y with respect to x.



Recall that linear functions can also be written in *point-slope* form:

$$y-y_1=m(x-x_1)$$

Find a linear function whose graph passes through the points (-1, -1) and (2, 5).



Ex. 2

A linear function is given by y = 6 - 5x. If x increases by 2, how does y change?

$$\Delta x = 2$$

$$\Delta y = ?$$

$$\Delta x = 2$$

$$\Delta y = ?$$

$$\Delta x = 2$$

$$\Delta y = ?$$

$$\Delta x = 2$$

$$\Delta x = 2$$

$$\Delta x = 2$$

$$\Delta y = ?$$

$$\Delta x = 2$$

$$\Delta y = ?$$

$$\Delta y = .$$

$$\Delta y$$

## The Tangent Problem

The word *tangent* comes from the Latin word *tangens*, which means touching. Consider the circle and the curve C below.



You can see that for the circle there are many tangent lines that can be drawn, but each tangent line touches the circle in only one place. For curve C however some of the tangent lines that can be drawn cross the curve in more than one place.

## <u>Ex. 3</u>

Find the equation of a tangent line to the parabola  $y = x^2$  at the point P(1, 1).



To improve the estimate, calculate the slope using points that approach x = 1 from the *left* and the *right*.

| From the Left |       | From the Ri | From the Right   |  |
|---------------|-------|-------------|------------------|--|
| <i>x</i> < 1  | m     | x > 1       | m <sub>sel</sub> |  |
| 0             | 1     | 2           | 3                |  |
| 0.5           | 1.5   | 1.5         | 2.5              |  |
| 0.9           | 1.9   | 1.1         | 2.1              |  |
| 0.99          | 1.99  | 1.01        | 2.01             |  |
| 0.999         | 1.999 | 1.001       | 2.001            |  |



As we approach I from the left and right . The slope approaches 2 from either direction.

· This suggests the tangent line slope at x=1 should be m=2



Homework Assignment Exercise 1.1: #1 – 4, 6, 8, 9 Now find b. y = 2x + b od (1,1) 1 = 2(1) + b1 = 2 + b The equation of the terms of th

The equation of the tangent line to the curve  $y=x^2$ at point (1,1) is: y=2x-1